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OVERVIEW OF ICLASS RESEARCH:

RELIABLE AND PARALLEL COMPUTING

Ravi K. Iyer

Computer Systems Group
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

RKI NASA Review 11/17/87



RELIABLE AND FAULT TOLERANT
COMPUTING

• Experimental Methods in

Reliability/Performance Evaluation

rn Model Extraction from Data

D

[]

Adaptive Performability Modeling and
Optimization

Learning-Based Approach for Load Allocation
Under Failure

rn Failure Recognition and Diagnosis

• Fault Tolerant Multiprocessor Architectures

Recovery Cache Techniques for Shared
Memory Architectures

Forward Recovery in Linked Data Structures

Reliable Garbage Collection for Checking
System Integrity

RKI 11/17/87



RELIABLE AND FAULT TOLERANT
COMPUTING

• Fault Tolerant Matrix Computation

[2 Application of Algorithm-Based Fault
Tolerance

(3 Design of Linear Codes for Reliable Matrix
Computation

E] Evaluation of Proposed Schemes Via
Simulations

RKI 11/17/87



PARALLEL PROCESSING

• General Applications

KI Study of Memory Referencing Behavior

D Investigation of Reduction in Communication
Overhead

K] Use of Program Controlled Cache

• Image Understanding (NE'I'NA)

KI Architecture for Integrated Vision System

D Employ Flexible, Reconfigurable
Programmable Interconnects

[3 Case Study of Stereo Vision for 3-D Surface
Extraction

KI Mapping and Performance Analysis of Several
Algorithms on NETRA

• Concurrent Microprocessor Design

r-1Single Chi p High Concurrency Designs

K] Integration of Compiler and Hardware Design

[3 Development of Design and Evaluation Tools

K] Development of Symbolic Debuggers

ItKI Overview 11/17/$7



PARALLEL PROCESSING

• Design Automation Applications

D Cell Placement, Wire Routing and Test
Generation

D Algorithm for Channel Routing

[3 Parallel Implementation on the Intel
Hypercube

• AI Algorithxns and Software

K] Efficient Evaluation of AI Problems

O Efficient Reordering of Logic Programs

K] Static versus Dynamic Restructuring

O Learning the Design of Heuristics

[] Learning-by-Experimentation and Neural
Networks

RKI Overview 11/17/87
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Reduction in Main Memory Traffic
Through the

Efficient Use of Local Memory

By

Geoffrey D. McNiven
University of Illinois at Urbana-Champaign

Summary of research conducted to satisfy requirements for Ph.D. in Electrical Engineering
October, 1987.



Introduction

Problem Statement

• Performance is limited by traffic to main memory.

• Small quantity (<8k) of local memory available.

• Demand system (prefetching can only increase traffic).

? How should memory be used to effect maximum reduction in
traffic?

• Knowing what to put in memory is easy: next item
accessed.

Knowing what to remove in order to make room is the
hard part.



Overview

Two parts in this research

1. Study of memory referencing behavior.

1. Flattening.

2. Bounds.

3. Histograms.

2. Recomendations for design of future memories.

1. Program controlled cache.
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Trace Analysis

Problems with classical techniques

• Classical trace analysis is a strong technique for measuring the

performance of existing systems.

• Results are dependent on the underlying architecture and

compiler.

• This is not appropriate when attempting to measure the
fundamental memory referencing behavior of a program.

• A memory location may hold several variables.

• Each variable may be used for several purposes.

• the referencing behavior of a memory location is a composite
of several different memory referencing behaviors.

_- Remove some of these effects of compilation quality and

memory allocation using a process called flattening.



Flattening

J

Effects

• Partition memory locations into values.

• A value is written 1 time (0 for initialized data) and may
be read any number of times.

• Represents a single "use" of a memory location.

• Provides specific data on referencing behavior of memory
locations during live periods.

• Remove 2 level (register, main memory) memory hierarchy.

• Remove effects of register allocation.

• Remove move instructions.

• A typical product of poor compilers.

• A byproduct of register allocation.



Bounds on Memory Use

Bound on Max live

The maximum number live in a class of values each of which
is referenced at least R times and none of which has a lifetime

2L
longer than L is no greater than N < _.

R

• The bounds for the classes with longer lifetimes become quite
large.

• This bound is achieved if the following hold:

1. All values have lifetime L.

2. No value is referenced more than R times.

3. All references over a period of 2L references are to values
in this class.

• Typically, none of these conditions holds.

Bound on Average Live

The average number live in a class of V values, none of which

has a lifetime greater than L, from a trace of length T
L'V

references, is no greater than A < .
T

• This bound considers referencing activity to the class of values.



Memory Referencing Rehavior

Memory referencing statistics

• Once the trace has been processed, compute some statistics fo_
each value and disp|ay the results in a histogram.

• Histograms may show fraction of values with such
statistics or fraction of references to values with such
statistics.

Standard
Deviation
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0.01



Memory Referencing Behavior

More Histograms

• Consider histograms of lifetime vs. number of references.

• Fraction of references corresponds to fraction of traffic.

Lifetime
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Memory Referencing Behavior

Average bounds

• From the ioformation .availabl_,.we can calculate
b6und on me average _ow tor each tiistogram class. the uppe

Lifetime
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Program Controlled Cache

Justification

• Local memory becomes filled with values whose presence does
not make the best contribution to reducing traffic.

• Values that are not referenced for a long period of time.

• Dead values.

• Realizing that a value is dead requires future knowledge.

• Something computers do not have.

• During compilation, the compiler can determine approximate
future knowledge.

• When a variable becomes dead.

• Relative times of next use.

The compiler can insert directives to invalidate dead blocks and

force the replacement of blocks that will not be referenced for a
long period of time.



Program Controlled Cache

Performance

• Approximate action of compiler by trace-driven simulation.

• Unflattened traces.

Traffic vs. Cache size, Direct Mapped
Live (solid), Conventional (dashed)
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Program Controlled Cache

Performance
I

* How much improvement is achieved over a conventional cache.

Traffic Reduction, Conventional to Live cache

direct (solid), 2 way (dashed), 4 way (dotted)
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Conclusions

Memory analysis

• Partitioning memory locations into contituent values provides

specific information concerning memory referencing behavior.

The bounds on memory use coupled with the histograms

showing fraction of traffic per class provide the memory
designer with a model for the cost in memory and benefit in
performance from allocating various classes of values to local

memory.

Program Controlled Cache

• Removing dead data from a cache provides a significant
improvement in traffic from the back end of the cache.

1. Read traffic.

2. Write traffic.

3. Write allocate traffic.

• Allows a smaller cache to be used to in place of a larger one
with no performance degradation.

• Adding program control provides nearly the performance



PARALLEL ALGORITHMS

FOR DESIGN AUTOMATION

Faculty : Prith Banerjee
Student : Randall Brouwer

Computer Systems Group

Coordinated Science Laboratory
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Outline
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• Motivation

• Channel Routing Problem

• Previous Work

• Iterative Algorithm

• Serial Implementation

• Parallel Implementation

• Results

• Conclusions

• Future Research



Motivation

• VLSI CAD tasks such as circuit, logic, fault simulation,

and component extraction are computation intensive

• Tasks such as cell placement, wire routing, and test

generation are NP-complete

• Uniprocessor algorithms take a long time

* Special-purpose hardware accelerators provide large

performance improvements

• Not cost-effective, hence general-purpose multiprocessors

• Many commercial multiprocessors

t" Shared memory, few processors (Alliant, Sequent)

_"Shared memory, many processors (BBN Butterfly)

t Local memory with message-passing, many
processors (Intel Hypercube, NCUBE, Ametek)



Hypercube Architecture

• Available hypercubes: intel iPSC, NCUBE, Ametek,
Caltech MARK-III

• Binary cube interconnection

• Local memory, message passing



Channel Routing Problem

• Final stage of Physical Design Process

• Rectangular channel with numbered terminals along top

and bottom edges

• Nets connect terminals with the same terminal number

• Vertical segments routed in one layer, horizontal in the
other

• Example
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Previous Work - _ _, _ _

• Left-Edge Algorithm -- Hashimota & Stevens ('71)

• Dogleg Algorithm -- Deutsch ('76)

• Graph theory based-- Yoshimura & Kuh ('82)

• Greedy Algorithm-- Rivest & Fiduccia ('82)

• YACR -- Sangiovanni-Vincentelli & Santomauro ('83)

• Hierarchical-- Bumstein & Pelavin ('83)

• Simulated Annealing-- Leong & Liu ('85)

• Knowledge-based (Weaver)-- Joobbani & Siewiorek ('86)



Our Simulated Annealing Channel Router
/

• Goals:

t High quality routings

[] minimize number of tracks used

[] minimize net length

t Parallelizable

t Easily extendible

[] unrestricted doglegging

[] obstacle avoidance

[] switchbox routing

Efficient-- time & space



Simulated Annealing -- General

• Proposed by Kirkpatrick, et al

t Applied to general optimization problems

[] placement

[] traveling salesman problem

[] global routing

[] channel routing

* Analogous to physical systems

I" system energy = cost function

I" molecule movement = modeled moves

• Accept all downhill and some uphill moves

Prob (Accept) = e-a / x'r

Objective
Function

m

- N__Min

I I I I I

Search Space



Algorithm

Set Initial Temperature & State

WHILE (Stopping Criteria Not Satisfied) DO

Select Subnet Elements to Move

Select Move Operation

Calculate Change in Cost

Evaluate Accept/Reject Based on Temperature &
Cost

IF (Accept) THEN

Update State Information

Adjust Temperature

END WHILE

Display Final Results



Cost Function
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Serial Implementation

• Data Structure

_"Track list

_---q_Ul-q---- _ ILzl----'-

r-sr_--- ._-_25k_IA---_---,-

I Column list

[] Array of Column Structures

• Moves

1"Displace -- Displace subnet to a new track

¢ Exchange -- Exchange two subnets



Parallel Implementation

• Target System: Intel iPSC Hypercube

• Partitioning

1"Channel

[] Assign subsets of tracks to each node

[] Adjacent track subsets are assigned to adjacent nodes

I" Data

[] Each node maintains data for its track subset

• Moves

I" Intra-Node Displace

_"Inter-Node Displace

Intra-Node Exchange

t Inter-Node Exchange



Node Domain Mapping

CHANNEL

Tli I

Ttk k

TLk k*l

T_ 2k

T,,k 2k, I

Tl:k 3k

Tdt 3k+ I

Tll 4k

Tdt 4k÷ I

Ttk 6k

Ttk _,+ 1

TA ak

PROCESSORS



Heuristics

* No Inter-Node Exchange below TThreshold

• More Iterations at Low Temperatures

• Penalize Excessive Length in Subnets

• Weighted Subnet Selection

• Weighted Displacement Track Selection

• Approximated Vertical Constraint Graph

t Apply to Subnet Cost Calculation



Results
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Conclusions

• Convergence of parallel algorithm dependent on annealing
parameters

• Simulated annealing more suitable for certain problems

like placement and partitioning rather than routing

• Issues in parallel algorithm

t Computation/communication ratio

t Cost of updating all nodes
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Future Research

• Evaluate performance of standard cell placement and

channel routing algorithms on real hypercube

• Investigate parallel algorithms for other tasks

-_Global Routing

t Integrated placement and routing package

• Related research on parallel algorithms funded by other

grants

_fCircuit extraction (IBM and NSF)

t Automatic test generation (JSEP)

t Timing simulation (NSF)
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PARALLEL ARCHITECTURES FOR

IMAGE UNDERSTANDING

Faculty : Janak H. Patel

Student : Alok N. Choudhary



Objective

• Identify Architecture for Integrated Vision System

- For Example

Vl Stereo Vision

O Motion Detection

[] Texture

• Approach

D Large Grain Parallelism

D Small Number of Powerful Processors

D

E]

Flexible, Reconfigurable and Programmable
Interconnect

Algorithms Mappings using Multi-Dimensional

Divide-and-Conquer

[3 Mappings independent of Input Data Size

• Integration of Algorithms

O Data Transfer (including I/O)

D Data Structures

Fq Task Scheduling

E] Load Balancing

'gll^



Current Research

[2]Stereo Vision for 3-D Surface Extraction

U] Involves Algorithms Suitable for

- SIMD

- MIMD

- Hybrid Implementation

• Set of Tasks Mapped

O 2-D Convolution

O Matching

U] Surface Fitting

U] Locating Contours

[2]Connected Components Labeling



An Image Processing Architecture

(Sharma, Patel and Ahuja)

GLORAL

ML=lvlOilY_

GLOBAL:

MEMORY_

DSP

DSP y

UN_fl_CTIONAL

CR(3S,_BAI_

PE : Processing Element

M :Local Memory

Processor Cluster Organization

4/ra



Stereo Vision

Stereo Vision Computation Flow

Task

Feature Detection

(e.g.,edges)

Feam_ Match

Surface Fitting

Locating contours

Surface Interpolation

Parameter Computation

Algorithm(s)

2-D Convolution

Window Match

Relaxation

Hough Transform

Convex Hull

Template Matching

Weighted Average

in varying size window

Relaxation

Type

SIMD

Hybrid

Hybrid

MIMD

MIMD

MIMD

Input

Image

Edges

L & R image

3-D

Points

Surface

Patches

Surface,

Contour

3-D Object

Output

Edges

3-D

Points

Surface

Patches

Contour

Description

3-D Object

Description

Parameters



Example : Hough Transform

• Algorithm to detect lines, curves, surfaces

• Computation done in parameter space

• Example : Line Segment

[-1r = x cos0 + y sin0

[3 Parameters are r and 0

UI Count votes for quantized r values for all quantized 0
values

D Local maxima represent line segments

• Mappings onto Cluster

[3 Data partitioned onto processors

l-7Parameters partitioned onto processors

D Parameters partitioned with data broadcast

ahc



Hough Transform Mapping

• Data Partitioning

n 2

• Each processor computes vote counts for _ image

• Steps

[] Compute Vote Counts (All processors in Parallel)

D Combine partial results (Tree sum) (All Processors in
Parallel)

[3 Distribute the Accumulated Vote Count (One
Processor)

l--1Report Local Maxima (All Processors in Parallel)

r

0 rl r2 r C

O1

02

OR

ACCUM_ARRAY(ij) FOR ONE PROCESSOR



Continued

• Tree Sum Method to Combine Partial Accumulator Arrays

An EXAMPLE WITH 16 PROCESSORS

• Time Complexity

Floating Point Operations = 3x[ _-_] xf xR[

Number of Comparisons = / .R-firxC xf,n xW

CMommm_nsi:t_ on I __w_i._: :i _2R lxog(wXRor_C)[

• f = fraction of Black Pixels

• fm = No. of Local Maxima

• W = window size

_he



Performance Analysis

• Computation, Communication and Storage Requirements

Hough Transform

Mapping

Data

Parameter

Computation

(re,)

xC xf. xW

xfro xW

Communication

(Too.)

Total

T_p+Tc_.

Memo_

2xlog2p xR xC +R ×C

.... xC

Alt. Parameter 3xI-_]xfxR+[-_]xf.xW fxn2 Max(T_,,T,,.) pR_XC

Connected Component Labeling

_ n2(l+fx(4+ft))x i n2 _x(6xlogzo-3) T_p+T_oM (l+f_)x _'Ir: +l

• f = Fraction of Significant Pixels

• fm = No. of Local Maxima

• W = Appropriate Window Size

• ft = Fraction of Significant Pixels with 0 as West Neighbor

• Nc = No. of Connected Components
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Future Research

• Mapping of Additional Tasks

• Performance Analysis

V] Analytical

Vq Simulation and Implementation

• Identify Memory Requirements

• Application of Stereo Vision for Real Time Motion
Detection

I-1Minimum Requirements on General Purpose
Architecture

Vq Specific Architecture Design

• Implementation of Algorithms on Available Architecture
such as Intel Hypercube

'Ol_



EFFICIENT REORDERING
OF

PROLOG PROGRAMS

Markian M. Gooley and Benjamin W. Wah

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Urbana, Illinois

This research was sup_pprted in part by the National Aeronautics and Space
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Motivation for this research

Why do it?

© Prolog programs are inefficient

© Execution:

1-1traverse AND/OR graph
-- depth-first

--left-to-right

© May traverse many large subgraphs
(goals) before failing

© May try more-expensive alternatives first

© If search fails, backtrack

D attempt to find solution in another way

13must search again



/

Motivation for this research (continued)

Why try reordering, in particular?

© Past research on limited reordering
(Warren)

13speedups of 1 to 2 orders of magnitude on
certain simple programs

[Elworth trying on complex programs

© Programmers exploit order for efficiency

0 Put inexpensive, likely-to-fail goals first in
clause

13Put clauses last if heads unlikely to unify

©However:

O Don't know cost, probability of success
precisely

r-] Won't change order if gain not obvious
and readability suffers

Greater efficiency possible with automatic
reordering.



A very short course in Prolog

Programming in Logic:

© Program: collection of logic sentences in
clausal form

r-] AND of zero or more goals implies
conclusion

© Premises and conclusion take arguments

OPredicate: clauses with same name, arity
(# of arguments)

1--1Disjunction of its clauses

a(X)
a(X) _ b(X)
ab_c

Logic

tautolo87

a(X) implies b(X)
a and b implies C

a(X).

b(X) :- a(X).
c :- a, b.

premise

conclusion head

conjunction of premises body

Prolog

fact

b(X) if a(X)

c if a and b

goal

Program execution:

Oquery: :-a(X), b(X).

©"a(X) and b(X) do not hold for any X."

© System searches depth-first, text-order for
counterexamples

© Backtracks if it cannot, seeks alternative
solutions



A very short course in Prolog (concluded)

Execution as traversal of an AND/OR tree:

o Example: query :- a(X,Y), and clauses:

a(X,Y) :- b(X,Z), c(Y,Z).

a(p,q).

b(r,p).

b(X,Y) :- d(Y,X).

c(p,t).

c(f,r).

c(g,s).

d(r,p).

d(s,r).

:- a(X,Y)

a(X,Y)

b(X,Z) c(Y,Z)

/I /I
b(r,p) d(Z,X) c(p,t) c(f,r)

d(r,p) d(s,r)

a(p,q)

c(g,s)



The problem to be solved:

How can we reorder Prolog clauses and
goals to reduce the expected cost of a
query?

©Try to minimize number of predicate calls

r-qunifications also a good measure; CPU
time too coarse perhaps

© Process should require limited intervention

0 Reordered program must be equivalent to
original

13 Have found levels of equivalence
1. Reflexive

2. Set

3. Tree

4. Sub-tree

Set-equivalence most useful

-- preserved by reorderings presented
here



Approach:

Generate possible reorderings:

OAll valid in "pure", non-recursive Prolog

O Real Prolog: fixity, semi-fixity, control

O Demands for certain modes

[-1especially from built-in predicates

D demand that some arguments be
constants

I_ order must satisfy demands.

O Need for extended mode system

I_ conventional systems too vague

O have developed legal modes

O Recursion: avoid infinite loops

Find cheapest reordering of these:

© Find cost of each permitted reordering

r-] model predicate or clause as a Markov
chain

delivers expected probability, cost

given those of constituents,

0 Choose cheapest order
13different orders for different modes



Restrictions on reordering:

Restriction

Mode

Fixity

Semi-fixity

Immobility

Control

Control

Recursive

Cause(s)

Demands of
built-in

predicates;
recursions

Predicates
with side-

effects (e.g.
I/0)
Certain
success
(failure) in
some
modes

Cut (t) as
goal

Explicit
disjunction:
a;b

Implication:
if-> then ;
else

Recursions

Effect

on goals of
clauses

order must

satisfy
demands

goal
immobile
within
clause

fixed with

respect to
certain
variables

can't
reorder

goals before
cut

confined to
halves of

disjunction
if immobile;
then,else
confined

avoid orders
that cause

infinite loops

on clauses
of

predicates

none

clause
immobile
within

predicate
none

clauses
can't cross
bearer of
cut

none

none

same

Propagation

demands

may pass to
ancestors

ancestors
become
fixed

ancestors
semi-fixed

(depends on
variables)

descendants

of goals
before cut:
immobile

none

none

none



Markov-chain model and method:

Description

0 Chain estimates probability, cost for
clause

CI given values of them for goals

E] need only give values for low levels

-- values propagate upward

13textbook mathematics

0 Method, in brief:

C]generate legal orders of goals

r-qfeed probability, cost of goals into model

0 compare results, keep best version for
each mode

© Model easily extended to special cases

rq control predicates

[3 determinism, etc.

Limitations

0 Potentially expensive

r-] n! for n goals

-- usually restricted (fixity, etc.)

-- i.e., 5! versus 2!2!

© Finding initial probabilities

r-qproblematic; depends on program
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The Markov-chain model and method:

Example: h :- a, b, c, d.

© Single solution: general purpose

p(a) p(b) p(c) p(d)

1-p(a) i-p(b) 1-p(c) 1-p(d)

p(i)" success probability for goal i
S: success state

F" failure state

© All solutions

1-p(a)

(5

p(a) p(b) p(c) p(d)

i-p(b) 1-p(c) 1-p(d) 1



Special chains:

Cut

1

Disjunction
1

Implication with disjunction



Markov-chain model and method: clauses

Can model clauses of predicate as chain

0 One state per head

r-loutgoing arcs with probabilitythat
unificationsucceeds, fails

© One state per body

D success/failure probabilities on arcs

© One state per success

© One state for failure



Conclusions

Summary

© Reordering Prolog for more efficient
execution

O speedups to two orders of magnitude
(unrestricted)

O lower but useful if restricted

© Levels of equivalence characterized

O utility at each level

O transformations which preserve a given
level

© New mode system for Prolog

© Automatic reordering system

© Applicability to parallel processing

Future Work

© Better mode system

© Techniques for recursive predicates

r-I improved analytical methods

O expert system if necessary

© Exploiting other properties

© Integrated reordering/transformation
system.



Concurrent Microprocessor Design and Implementation
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(1) Design and Implement Microprocessors with Highly

Concurrent Microarchitectures

(2) Integrate the Compiler and the Hardware Design to

Exploit Concurrency

(3) Develop Tools for Designing, Implementing, Debug-

ging, and Evaluating Microprocessors with Highly Con-

current Microarchitectures

(4) Develop Symbolic Debuggers and Exception Handlers

for Microprocessors with Highly Concurrent Microar-

chitectures.



Microprocessor Design and Implementation

HPSm (Berkeley)

Single chip microarchitecture supporting out-of-order

execution, fully pipelined FPU, and executing multiple

instructions per cycle.

1.6 um COMS (HP)

phase clock

technology, 80ns cycle time, 4-

37.5MIPS/12.5MFLOPS

22.5MIPS/3.0MFLOPS sustained

peak and

Next Chip

1.6 um CMOS (HP) technology,

phase clock

40ns cycle time, 2-

50.0MIPS/25.0MFLOPS

40.0MIPS/6.0MFLOPS sustained

peak and



C Compiler Development

"Sure, it can be done at Compile time."

(1) Allocate/Assign registers for concurrent Microarchitec-

tures

(2) Schedule operations to reduce the hardware

overhead

scheduling

(3)Remove Output and Antidependencies

hardware renaming overhead

to reduce

(4) Support symbolic debuggers and exception handlers

(5) More conventional code optimizations



Tool Development (MATE)

(1) Sequential state consistency checker

(2) Microarchitecture state serializer

(3) Debugging Environment for Concurrent Microarchitec-

tures

(4) Testability analysis and test pattem generator for Con-

current Microarchitectures



Symbolic Debuggers and Exception Handlers

(1) Constructing consistent execution states

(2) Handling exceptions with inconsistent states

floating-point operations

memory management

system calls

(3) Extension to symbolic debuggers and

handlers in multiprocessor environments

exception
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EXPERIMENTAL METHODS FOR
PERFORMANCE/RELIABILITY
EVALUATION

Extraction of Behavioral Patterns from
Measurements

• Joint Modeling of Resource
Usage/Failure/Recovery Process

[3 Model Identification Using Statistical Pattern
Recognition

K] Application for Adaptive Performability
Tuning

• Adaptive Resource Usage Prediction

[3 Statistical Clustering to Identify System
Resource Usage Patterns

O Application for Load Re-allocation Under
Failure

RKl MKI-I_ Printed 11/17/87



J

EXPERIMENTAL METHODS FOR
PERFORMANCE/RELIABILITY
EVALUATION

• Fault Propagation in Shared Memory
Multiprocessors

[3 Hardware Instrumentation for Trace

Acquisition

[3 Design of Fault Injection Experiments

K] Investigation of Multiple and Near Coincident
Faults

• Failure Diagnosis

K] Symptom Based

- Error Clustering

- Symptom Extraction

- Statistical Pattern Recognition

[3 Reasoning Based

- System Structure Representation Using Fault-
Behavior Theorems

- Resolution of Theorems with known Inputs

- Partitioning to Reduce Diagnosis Complexity

- Extensions to Probabilistic Inputs and Higher
Level Diagnosis

RKI RKI-I_ Printed 11/17/87



EXPERIMENTAL METHODS FOR
PERFORMANCE/RELIABILITY
EVALUATION

• Performance Measurements on Lisp Systems
and Programs

KI Low Interference Sampling of Virtual Memory
and Garbage Collection Meters

K] Dynamic Evaluation Under Real Workload
Conditions

K1Paging, Storage Allocation, Memory Space
Usage, and Garbage Collection Activity

O Applications to Adaptive, Self-Tuning
Systems, Design of Lisp Architectures,
Synthetic Workloads for Performance
Evaluation

RKI ICLA_ Prtnted 11/17/87



ADAPTIVE RESOURCE USAGE PREDICTION

• Measured program resource usage in UNIX
environment

KI CPU used by a process

[2 Bytes of I0 performed

KI Memory required

• Performed cluster analysis on measured data

rn

n

Used K-means clustering algorithm

Analysis resulted in seven clusters (i.e. found

program resource usage to fall into seven
categories)

• Clusters used to build state-transition models

[3

N

Models represent the dynamics of resource
usage of a program run several times

Models show the transition probabilites of a
program

• Programbased resource usage prediction

[3 Scheme predicts resoruces required for a
process at START of its life given:

- the programs identity

- past resource usage of the program

RK! lUa-ICLA_ Printed 11/17/87



Cluster Analysis

• Three resources (CPU time, file I/O,

and memory) form a 3D space.

• Processes are points in the resource space.

• The k-means algorithm identifies k clusters,

C 1" C 2' ""' Ck" that minimize:

k

7_, Z _.-x..fi

_=1 j

where x.. E C. and _. is the centroid of the cluster C..

• Results:

Cluster

Number

1
2
3
4
5
6
7

Cluster

Frequency

Cluster Statistics

(median values of the resources)

CPU File I/O Memory
(seconds) (Kbytes) (Kbytes)

il.26%

2.64%
6.43%
9.42%

29.76%
29.69%
10.77%

4.62 13.870 194.726
0.25 0.000 446.461
0.80 8.486 192.444

0.25 0.732 117.294
0.07 0.000 16.000
0.25 2.000 50.23.8
1.54 103.804 134.386



Resource Usage Model

• Build one for each program.

• When a process (a program in execution) terminates

determine its cluster membership (or state).

• For each program, remember these cluster numbers
in the terminating order of processes.

DEx: 5, 5, 5, 7, 7, 7, 5, ..... , and 5.

• Compute:

Kl Transition probability from state i to j:

transitions from state i to state j

Pij =
transitions from state i

v1 Visit ratio for state i:

V m
m

occurrences of state i

total occurrences o/ states



Resource usage model -- for a program from data

State-Transition Diagram

0.25 To

State #7

To

State #7

State
#2

0.576

0.231

State
#4

0.205

0.154

0.: State
To

#6
State #5

F
To

State #2

0.109

0.003

0.038

0.455

To

State #2

State
#7

State
#5

0.05

0.333

).031

To

State #4

To

State #6

Visit Ratios

cluster# 1 2 3 4 5 6 7

ratio - 0.005 - 0.056 0.450 0.077 0.412



Resource Requirements Computation

• Say, l is the state of the previous execution of a progra_

• Then, probability that next execution will be state j is:

]=I,...,N

• So, kth resource for the next process is:

N

,k= z %i x _k),
j=l

k = CPU, I/0, MEM

where, djk is typical resource requirement for jth state.

• Best, if djk is the centroid of ]th .subcluster

-- A subcluster is a part of a cluster that
consists of a few past executions of the program.



How Good is the Prediction7

• A trace-driven experiment:
Predict & compare with actual

• Correlations between predicted and actual:

I I
I I
I Resource I Rank I
I I I
I I I
[ CPU Time [ 0.8379 [
I I I
[ File I/O [ 0.8105 [
I I I
[Memory [ 0.8925 [

Correlation Coefficients

Product-Moment

0.8406

0.1974

0.8834

A corr. coff. of 1.0 implies perfect prediction.

Rank correlation allows nonlinear relationship.



Prediction Quality: A Note

• When a minimum of_3 _ executions are used,

the prediction scheme has n...oprediction for:

D About 4% of processes;

[] About 8% of CPU time.



Conclusions

• A probabilistic scheme for predicting CPU time,

file I/0, and memory requirements of a process.

m _A_program-based scheme.

• A cluster analysis identifies resource states.

• A state-transition model represents dynamics of

resource usage in past executions of a program.

• Computes resource requirement

for the next execution using:

[3] Transition probabilities;

K] Typical resource usage of each state.

• Quality of Prediction:

KI Predicted & actual CPU times correlate at 0.84.

KI About 82% of errors in CPU time
are less than 0.5 std devs.
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OUTLINE

• Cache-based Recovery for Shared Memory Multiprocessor
Systems

• Forward Recovery in Linked Data Structures

• Reliable Garbage Collection and Recovery



CACHE-BASED RECOVERY FOR SHARED

MEMORY MULTIPROCESSOR SYSTEMS

Objective

• Recover from transient processor failures without a global
restart

Motivation

• Few known solutions to recovery in shared memory
multiprocessors

• Checkpointing recovery schemes for distributed systems

are not easily applicable nor cost effective

Approach

• A private cache-based checkpointing scheme to maintain a
consistent global state

• A simple recovery technique without rollback propagation



System Architecture

• Write-back cache

• One process in each processor

• Interprocess communication through accessing shared
variables

• Bus-based cache coherence protocol

ipr°cess°r 1 iprocesso_ Ipr°cess°_. o o ipr°cess°r 1

I I I I
[ cache I [ cache 1 I cache [ ] cache ]

f I

I

shared memory



Checkpointing Algorithm

if a block is to be written back, OR a dirty block is to be
read by another processor

then begin

(1) copy the working register set into the back-up set;

(2) mark all dirty cache blocks as Unwritable;

end

Recovery Algorithm

if an error is detected

then begin

(1) invalidate cache blocks except those which are
Unwritable;

(2) reload the working register set from the back-up set;

(3) resume normal operation;

end



Implementation

• Illinois Protocol

bus bus write mi_

write miss ] Invalid I invalidate

read miss NN_ i/ read miss(fromcache)(frommemory) ..._ _.....

"*'''''''I..., ..,.

Unmodified ............... _ .......... _._ .... Unmodifie, d .... "':

write -'" bus '. ".. . .*
°....

read

write miss _ ] Exclusive I "'" read missq Modified miss

hit

• Modified Illinois Protocol Integrating the Checkpointing
Scheme

bus write miss

invalidate
Invalid / read miss•.... (fromcache)

"°.

bus

read miss write miss I

(from memory) x_
%N_ ...,IF"

• "" .''"

t''" "'..

Unmodified _ ........... iill§_.................... _ Unmodified .... "'.

wri t_,,_ bus read .......... _ / ..4'
hit _ mios .... .wrl.te / ... bus read " ""

-- . ...... _-- hit/ ..... miss I_i/s"""
.... / .. (***) read

• '....... [ write hit _ _ .'" miss
I Unwritable I _, Exclusive L

' ]= L Modified J- write miss

checkpoindng ___ write
hit

(***) a checkpointing session is initiated



Evaluation

• System Performance versus Number of processors

NU

15--

10--

m

w

NU

• no checkpointing

timestamp approach m = 0.05, f= 0.088, c = 0.0096, L ---512

[] marking every 16 checkpoints

a actually marking

I I I I
0 5 10 15

N (number of processors)

20

15--

10-

an

m

no checkpointing m = 0.02, f = 0.063, c _-0.0043..,.,,-"-

fimestamp approach L = 512 _ ..... .a.,,...a,-._

ta marking every 16 checkpoints __J""_"'_':='ll"-"a -',-''a'''a'-'a._
a actu',.dly marking __ "L''I_'-_.-

.=.._.'-;'/_"":._, _";"'_" .,_

I I 1 I
0 5 10 15

N (number of processors)

20



FORWARD RECOVERY IN LINKED DATA
STRUCTURES

Objective

• To detect and correct errors to the structural information of

data structures, concurrently with access

Approach

• Structural error detection/correction

• Low-overhead, constant-time concurrent checking

• Local concurrent error detection performs checking in a
locality (a "checking window") of a current node

* Virtual pointers used as both backpointers and for error
detection/correction



Virtual Backpointer

• Vi = f(Qi, Aancestor)

• Aancestor =f* (Qi, vi)

Virtual Double-Linked List (VDLL)

• Derived from double-linked list

• Vi = Pi _ Ai-1 = Ai+l • Ai-1



B-Tree with Virtual Backpointers (VBT)

• Derived from order-m B-tree

• Vi = Pi,0 _ Pi,1 _ "'" _ Pi,2m • Aparent,j

A4
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Evaluation

• Detection Latency

- Sequent Balance 8000 (6 processors),

4-users, VDLL-based DBMS system;
Concurrent Auditor Process reduced

latency by factor of 5

Sun 3/50,
1-user, 1 VBT;

Work in-progress

,, Detection and Correction Capability

Sun 3/110,
1-user, 1 VDLL;

5% erroneous pointers: 100% detection, 90% correctio:

30% erroneous pointers: 100% detection, 60% correctie
Performance Characteristics

Network of Sun 3/110,

Multi-user, VDLL- and VBT- based DBMS system;
Work in progress



RELIABLE GARBAGE COLLECTION

Objective- reliable reclamation of memory

• Collect only garbage

• Collect all desired garbage

* Avoid corruption of objects

• Recovery in the event of a crash during garbage collection

Approach (also see poster)

• Reference count technique

• Arbiter used for resolving interprocess references

• Distributed checkpoints

• Use garbage collection to check structural integrity



CURRENT WORK

Cache-based recovery in shared memory multiprocesso

* Extended failures

• Hierarchical memory structures

Forward recovery in linked data structures

• Distributed implementation

• Evaluation

Reliable parallel/distributed garbage collection

• Detailed recovery procedures

• Version management- historical objects
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OUTLINE

• Objective

• Motivation/Related Research

• Approach

• Resource-usage/error/recovery model

• model construction

• model analysis

• Performability model

• Concluding Remarks



MOTIVATION

• Analytical models of hardware failures well investigated
[Meyer 82, Trivedi 86]

• Most of current analytical models analysis are inadequate
to represent the reliability of a system

• No systematic approach for modeling internal behavior
from real data

• Only external behavior has been modeled based on the

assumption of cyclostationary Gaussian proces s [Castillo
82]

• Developing models from real data valuable:

[] provide new insight into failure characterization

[] quantify interaction between different system

components



APPROACH

• Instrument the system to collect data on error occurrences
and recovery information (if nay)

• Employ clustering methods to identify important error
states for the operational environment

• Determine types of recovery employed and their
relationship to error states

• Use statistical methods to determine sojourn times in error
and recovery states

• Evaluate key model characteristics



WORKLOAD MEASUREMENTS
/

* Workload Measurements

[] CPU utilization

[] Channel utilization and CPU wait

[] Channel start I/O rate

[] Disk I/O service requests rate

[] Paging rate



WORKLOAD CLUSTERS

* CPU-bound load

Cluster

id

W1

W2

W3

W4

W5

W6

W7

Ws

R 2 of CPU =

R2 of CHB =

overall R 2 =

% of

obs

7.44

0.50

2.73

12.41

0.74

17.12

22.58

36.48

0.9724

0.8095

0.9604

Mean

of CPU

0.0981

0.1126

0.1547

0.3105

0.3639

0.5416

0.7207

0.9612

Mean

of CHB

0.1072

0.5525

0.2801

0.1637

0.3819

0.1287

0.0848

0.0168

Std dev

of CPU

0.0462

0.0433

0.0647

0.0550

0.0365

0.0560

0.0576

0.0362

Std dev

of CHB

0.0436

0.0669

0.0755

0.0459

0.1923

0.0511

0.0301

0.0143



WORKLOAD MODEL

0.351
0.037 0.162

0.20

0.037

0.111

0.333

0.50
0.135

O.023

0.182

0.205

W7
0.304 0.340

W6

0.027 0.091 0.216



ERROR MEASUREMENTS

• Error Types

[] CPU error

[] Channel error

[] Software error (e.g., divide by zero, endless loop and

program exceptions)

[] Disk error

[] Multiple error (errors affecting more than one type of

component)

• Recovery Modes

[] Hardware recovery (HWR)- hardware instruction

retry, ECC

[] Software recovery (SWR) -- software retry,

functional recovery routines

[] Alternative recovery (ALT) -- alternative processor

[] Off-line repair (OFFL)



RECOVERY MODEL

SWE

successful

successful

successful

successful

v
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RESOURCE-USAGE/ERROR/RECOVERY MODEL

.063

0 1.0

.0256 1.0 .983

017

.231 0

.355

.997

to good

workload

states



R-U/E/R MODEL (cont.)

J

• Waiting and holding time densities for a CPU load state

Prob.
0.2

0.0

0

f (t) = 0.000146e -o.oo'a + 0.000039e-O.OOlO3t

..............
20 40 60 80 100 120 140

Duration (minutes)

Waiting time density of state Ws (CPU = 0.96)

Prob. 0.2

0.0

0

Pk f (t) = o.(xx)94e "-°.°°4,

20 40 60 80 100 120

Duration (minutes)

Holding time density from state Ws to state DASD

Prob. 0.2

0.0

0

f (t) = 0.00085e --o._,

.................... ._. ..... _ i

20 40 60 80 100 120

Duration (minutes)

Holding time density from state Ws to state SWE



SUMMARY of R-U/E/R MODEL

• Workload dynamics explicitly described

• Error/recovery explicitly modeled

• Waiting time in some workload and error states not simple

exponentials

• Transition from workload state to error states depend on
destinations

• Resource-usage/error/recovery process modeled as
irreducible semi-Markov process (OFFL recurrent)



EFFECT OF WORKLOAD

• CPU workload

CPU

Load

0.96

0.72

0.54

Error state

CHAN SWE DASD MULT

Time Prob Time

668.18

596.28

1304.96

0.0011

0.0O32

0.0010

Time Prob

1609.71 0.0786

1118.12 0.0492

1507.92 0.0471

1218.62

971.62

1070.10

Prob

0.1296

0.0990

0.0489

Time

1641.20

757.09

722.26

Prob

0.0285

0.0146

0.0052

Time - in seconds.

Total

Prob

0.2377

0.1661

0.1027

• Summary

[3 higher workload results in a higher error
probability

KI error probability increases with increased
holding time



MODEL VALIDATION

• (I)i -- occupancy probability evaluated from the
model

• _i -- actual occupancy probability estimated from
observed data .,

Stat_

4

E

E

W 4 W 6 W 7 W8 DASD

0.1258 0.1639 0.2255 0.3398 0.0383

0.1259 0.1634 0.2311 0.3452 0.0386

0.0001 0.0005 0.0056 0.0054 0.0003

0.0008 0.0031 0.0242 0.0156 0.0078

E : the absolute error, [ _ --

• Semi-Markov assumption provides a fairly
accurate prediction
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SEMI-MARKOV VS. MARKOV

• Markov process is

D independent semi-Markov process

E::]exponential distribution in each, state

• Reliabilities of two models

1.0

0.8

0.6

R(t)

0.4

0.2

0.0

i

If ! I I I ! I ! I I I ,

20 ..... 40 Tim 6P inures)etm 80 100 120

solidline-- Markov

dottedline--semi-Markov



SUMMARY of MODEL ANALYSIS

• Semi-Markov model provides a fairly accurate
prediction.

• Constant error (or failure) probability assumption

may not be valid because that

D higher resource-usage results in higher error
probability

[] longer holding time also results in higher error
probability

• Markov process assump{ion results in

El inaccurate estimation of the reliability



REWARD FUNCTION

• Reward rate for each state i

S i

S i "_- e i

0

if/ _. SN US E

ifi

where s i : service rate of state i

e i : error rate of state i

• Calculated Reward rates for different error states

State

r.
L

DASD

0.5708

SWE CHAN

0.2736 0.9946

MULT

0.2777
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PERFORMABILITY ANALYSIS

• Reward rate at time t, X(t)

X(t) =
F i

0

the process is in state i at time t

otherwise

• The expected reward rate at time t (using
SHARPE)

°0 .................................................

F[x(t_.5_ .................

0.0

0

.... | .... | .... i .... | .... i .... i .... |

5 10 ,241t_ours 20 25 30 35

(a).

1.0

E[X(t)]
0.5

0.0

0

MULT

DASD (r.r. > O)

5 10 M_tes 20 25 30 35

(b)



SUMMARY of PERFORMABILITY ANALYSIS

• Explicitly described the performability model
based on the error data

• Investigated the impact due to different errors

• SWE error degrades the system performance
more severely than the DASD error

[] due to the lower reward rate



CONCLUSIONS

• Established a methodology to construct a
workload/performability model based on real data

• Modeled both normal and erroneous behavior

• Investigated the impact due to different errors on the

system reliability and performance

• Can be used as an adaptive tuning tool during design

phase
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FAULT-TOLERANT MATRIX COMPUTATIONS

ON PROCESSOR ARRAYS

V. S. S. Nair

J. A. Abraham

Computer Systems Group
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University of Illinois
Urbana, IL-61801



ALC_RITI-IM BASED FAULT-TOLERANCE

• Low cost techniques

• Applicable to processor arrays.

PRIMARY CHARACTERISTICS

• Encode data at a high level.

• Design algorithm to operate on encoded input data
and produce encoded output data.

• Distribute computation tasks among multiple
computation units, so that failure of a unit affects
only a portion of the output data, enabling the
correct data to be recovered.



APPLICATION TO MATRIX OPERATIONS

PREVIOUS WORK

• Checksum Matrix Encoding (CC)

• Weighted Checksum Encoding (WCC)

Checksum Encoding Example.

li3 l 7A 7 Ac- 10 11

10 11 20 24

1Ar 7 21
21 A/= i0 30

30 20 24 61

' {



NUMERICAL PROBLEMS

• Roundoff Errors

• Overflow/Underflow errors

• These errors may be misconstrued as an error due to a

physical fault.

Previous solutions for roundoff errors

• Define a bound and treat all errors less than the bound as

numerical errors.

[] The bound depends on the data set.

[] If the bound is small, it leads to incorrect fault
detection.

[] If the bound is high, the fault detectability will be

poor.



OVERFLOW PROBLEMS

• When computing row/column checksums, we are
storing sums of n elements.

• The checksum element, (n+l,n+l) can be as large
as n 2 times the largest element in the original
matrix.

• Need increased word size for overflow protection.

Modulo Arithmetic to prevent Overflow

• For integers perform residue Arithmetic with
modulus M = 2 r

an+l,/= _ aid rood M

• Encoding still holds.

• But not possible for floating point numbers.



AIM

• To keep the numerical errors as small as possible.

Solution

• Identify various stages which are prone to numerical errors
in the fault-tolerance technique.

• Devise techniques to reduce the error in each stage.

• Stages identified are

[] Coding phase

[] Actual data computation phase

[] Check element computation phase.



CODING PHASE

It is impossible to find a coding technique which will give

minimal numerical error independent of the data set on
which it is applied.

The approach should be to choose different algorithms for
different set of data.

• Instead of confining the fault-tolerant encodings to the

checksums and the weighted checksums we may use
different encoding schemes for different sets of data.
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GENERAL LINEAR CODES (GLC)

DEFINITION 1: An encoder vector is a vector whose

inner product with a column/row vector will produce
a column/row check element.

• A valid Encoder vector will produce check elements
whose properties will be preserved during matrix
multiplication, addition, transposition and LU-
decomposition.

THEOREM 1: An Encoder vector is a valid encoder vector

if and only if it is a linear operator.



ERROR ANALYSIS

• Maximum roundoff error < u m I I a I 12 I I x I 12

where u is the machine dependent unit round off error and
m is the mantissa, I m I < 1.

If we select I I a I 12 to be very small, the absolute error

in the code element will be small, and observability of the

actual error at the output will be very poor.

• As a compromise select a constant such that
C--II a II 2 II x II 2.

• When II x 112 is high select a small II a 112 and vice
versa.



EXAMPLE CODES

• Average Checksum Codes

• Weighted Average Checksum codes

• Codes produced by Periodic Encoder vectors

• Codes produced by Normalized Encoder vectors.
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AVERAGE CHECKSUM ENCODING (ACC)

• Instead of summing the column/row vector, lind

the average

Example

A=

2 3 4

-1 6 --2

2 0 1
A C

2 3 4

-1 6 -2

2 0 1

1 3 1

A y  34i16
2 0 i

A/=

2 3 4 3

-16-2 1

2 0 1 1

5
131 7



PERIODIC ENCODER VECTORS

Advantages

• Less memory space required to store the encoder vector
elements

• Easy expansion of the system.

• If the average weight of the encoder vector is zero, there
will not be any overflow error during coding.

EXAMPLE 1:[1-1 1-1 ...]

EXAMPLE 2: [cos 0 cos 2 0 ... cos n 0]



CHECK ELEMENT COMPUTATION PHASE

• Modify the algorithm or/and hardware to reduce the
numerical errors.

Algorithm modification

• When the dimension of the matrices are small use binary

type addition.

• For larger dimensions (>50) use Kahan's Algorithm for
adding up the elements.

[] In Kahan's method we determine an approximation r
to the roundoff error during addition of two numbers

a and b by computing in floating point arithmetic.
r=a-(a+b)+b.

[] Kahan's algorithm when used with single precision,
produces roundoff errors as small as that in double

precision.



ADDITION TREE USING KAHAN'S ALGORITHM

x1 X2

+

x2

x3

+



OVERHEAD COMPARISON

• Hardware overhead in terms of number of processors is

same as in the case of Checksum encoding, (2n + 1). But

each processor needs an extra register to hold the encoder
vector element.

• Time Overhead for CC is 2 * r * log2n.

• GLC requires three additional multiplication cycles.

• For large arrays, the overhead required for both techniques
is almost the same.

THEORETICAL TIME REDUNDANCY GRAPH

Theoretical
Time redundancy

Ratio
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SIMULATION _TS

Matrix
Dimension

2by2

3by3

4by4

5by5

6by6

SIMULATION RESULTS

Time
with out

Checkin8
-6220

8870

11520

14170

16820

Time

with

Checkin8

1O629

13_76

17143

Z0189

23463

"l'l'R

58.76%

42.59%

33.77%

Z8.14%

24.22%

70.88%

57.56%

48.81%

42.47%

39.49%

• TTR- Theoretical Time Redundancy

• OTR - Observed Time Redundancy.

• Time is measured in number of clock ticks.



SIMULATION RF.SIALTS

• Observed the time redundancy required for the
algorithms, applied to arrays of small sizes.

• Figures obtained for computation time with out
checking (C) and with checking (C,') fit very well
into equations

C=K+l*n

C, = K, + l, * log2n

where If, K,, l,l,, are simulator-dependent
parameters, and n is the size of the matrix

• Since the simulation is extremely computation
intensive, the above equations were used to predict
the overhead for larger numbers of processors.



TTR-OTR GRAPHS FOR CHECKSUM CODE
J
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OTR GRAPHS FOR CC AND GLC

Observed
Time redundancy

Ratio
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CONCLUSION

Identified a general set of linear codes for fault-tolerant

matrix computations.

• When roundoff is the larger problem use normalized

encoder vectors. For overflow problems use Average
checksum codes or codes produced by periodic encoder

vectors.

Hardware and time redundancy required for the proposed
codes are of the same order as that of the previous

techniques.

• Actual overhead associated with the proposed schemes

found by simulation, and was observed to be quite small.
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Alma-act : Trace-dziven simulation is a simple way of evaluating cache memory sys-

tems with varying hardware parameters. But to evaluate realisticworkloads, simulating

even a few millionsof addressesisnot adequate and such large scalesimulationisimpracti-

cal from the considerationof space and time requirement. In thispaper,new methods of

simulation based on jointusage of statisticaltechniques and the principlesof computer

architecture axe proposed for decreasing the need for large trace measurements and to

predict true program behavior. In our method, sampling techniques are applied while col-

lecting the address trace from a workload; thisdrasticallyreduces the space needed to store

the _.race.New simulationtechniquesare developed to use the sampled data to predictnot

only the mean miss rateof the cache,but alsoitstrue distxibution.Finally.a model ispro-

posed to statistically project the results to different context-switch intervals from only one

simulation of a small number of samples of a fixed size.
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ACL-RYRATE LOW-COST MXTHODS FOR PERFORMANCE EVALUATION

OF CACHE MEMORY SYSTEMS

1. Introduction

It is well known that the use of a cache in memory hierarchy has considerable

influence on the overall performance of a computer system. Although. cache memory sys-

tems have been extensively mea.qured and simulated for traditional high level languages

like Fortran, Pascal. Algol and PL1 [1]. studies on LISP programs art few and far between

[2,3.4].

The goalof thisprojectwas to develop new techniquesforcache evaluation.For vari-

ous reasons,discussed in the next section,trace driven simulation was selectedLs the

method of evaluation.But, soon itwas found thatconventionalsimulationsuffersfrom a

lotof limitations;the results,so obtained,do not representtrueprogram behavior. Some of

these aspectshave already been pointed out by Smith [3].Since resultson LISP program

architectureare few. LISP programs were employed in our case _udies. The proposed

methodology, however, isequally applicableto otherprograms.

This paper establishesa new method of tracedrivensimulationfor cache memory sys'-

terns,based on sampling techniques. This method decreasesthe need for largetracemeas-

urements and simulation,and isbased on jointusageof statisticaltechniquesand the prin-

ciplesof computer architecture.Itisshown that.unlikeconventionaltechniques,the pro-

posed approach isable to charactariaea complete program with low overhead. Thus. itnot

only allows a predictionof the mean miss rate.but alsoof itstruedisrribtaion.In the next

section,different_ts-pectsof conventional tracedrivensimulationispresentedalong with its

limitations.
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2. Different Methods of Evaluation

Among the various methods of performance evaluation of cache based systems,

HardwarJ Mon_or_g is the most accurate method. But it is very di_cult to instrument

and it takes up a lot of time to develop. Even after implementing it for a particular

machine, i_ is hard to vary the parameters of the architecture. Arudyfi¢_ M_hods can be

quiet cheap in most cases. But it involves so many simplifying a._umptions that ;he results

may be far from being true. This leaves us with S_ which is simple and quiet easy

to develop. It can be used to evaluate any existing or proposed architectures. The parame-

of _e architecture can be varied very easily simply by changing the input parameters

of a simulator.

2.1. Trao¢ Driven Simulation

A program address trace consists of a sequence of the virtual (usually) addresses,

referenced by a program or programs, along with other relevant information. Trace driven

simulatim is the process of running the simulation model of a system with the trace. A

simulaUzr can also be driven by a random number generator: but, because of ;he lack of

existence of an accurate behavioral model of programs in the context of cache, such simula-

tion can never represent realistic program behavior. On the other hand. a trace represents

the behavior of at least one program and so. trace driven simulation will characterize that

correctly. For all these reasons, this has been chosen by most people, including us for

evaluation of memory systems.

2.1.I. Limitations

In spite of all these nice features, there are several limitations of trace driven simula-

tion which make it inadequate not only for our purpose, but also as a tool of performance



evaluationin general.

(I) It simulates only a very small l_trt of a program. For example, if a program runs for

a thousand seconds of cpu time at the rate of one million memory references per

second, gimuLating a trace of one million addresses will only represent 0.01% of the

whole program.

(2) Traces are usually collected from the initial portion of a program, rather than from

the corepartof it.This practiceof takinga singlesectionof a program and projecting

it for the entireprogram is highly questionable. Smith [1,3] has reported that an

enormous degree of variabilityexistsamong tracesin theirmeasured miss ratiosin

cache. Our own experience with simulation of cache memories has shown that there is

a Large degree of variation in program behavior in one sample of half million refer-

ences with another of the same program at a differenttime. Even ifthe mean miss

rate,measured thisway, happens to be the same as that of the whole program, this

mean value isnot adequate to accuratelyreflectthe performance of the system. We

will show that the distributionof thismeasured miss ratioisfar from the realone.

Such experiencesuggeststhat simulation with a sectionof program chosen on an ad-

hoc basis with • few thousand references cannot accurately reflect the overall program

behavior.

(3) Any large scale simulation with • few millions of addresses requires an enormous

space to s'tore the trace. It is also very expensive from the consideration of computer

time. Each such simulation with one set of hardware parameters as input typically

takes up several minutes of cpu time on • minicomputer (e.g., VAX-11/780). So, run-

ning • bunch of simulation jobs with several combinations of architectural parameters

for a single trace is computation•fly very expensive.



(4) Most machines s_itch context every few thousands of instructions, especially in a

multiprogramming environment. The Context switch can occur due to I/0 interrupts

or time out of • fixed time slice. This effect of context switch on cache performance

has been studied by others [5, 6.7]. But, their methods involve simulating every

different switch intervals or a curve fitting on individual program traces. Our objec-

tive is to perform only one simulation, based on our sampling technique and statisti-

cally project the results for other switch intervals.

To overcome these limitations, we propose • new sampling-based technique for study-

ing cache performance in LISP systems. The methodology is based on statistical methods

and is capable of characterizing • program without extensive simulation.

3. SamplLug Technique

In conventional simulation, the effect of task switches on • program can be estimated

by assuming the cache to be flushed totally during • context switch [5, 8]. This is essen-

tially true for smaller caches. For larger caches, the miss ratio obtained in this way peovide

• lower limit to the cache performance. The Freliminary aim of our sampling technique is

to provide • cost-effective approach to estimate the distribution of this cold-start miss ratio.

Instead of simulating all consecutive intervals of address reference, as is done con-

ventionally, we sample the address trace (Fig. 1) and run the simulation only on the sam-

pied data.

Our Mcthodolog'y

(I) Choose • sample sizewhich istypically• few thou.c_.ndsof consecutiveaddresses.In

the initialstudy, thiscorrespondstothe task intervalconsidered.



SAMPLES
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(2) Depending on the sizeof the whole trace,determine the uniform sampling intervalto

atta/na certainnumber of samples.

(3) Sample the continuoustraceaccordingly(or.preferablycollectonly the sampled part

of t_ traceat thebeginningitself)and storethe sampled addressesonly.

(4) Assume cachetobe empty atthe beginningof each sample and simulatecache memory

sys'_,mfor eachsample.

Claim

The distribution of the average miss ratio for the samples gives an estimate of that of

the cold-gaff miss ratio over the entire trace for the same context switch interval as the

sample ui_.

V_dicht.i_ Procedure

Simulatingone sample of consecutiveaddressesrepresentsthe behaviorof thatpartic-

ular con_e,rtswitch interval.Because of the cold-start,the miss rate isvery high at the

beginningof the intervaland usu_iIy decreasesas the cache getsmore and more filledup.

We considerthe averagevalue of the miss ratioat the end of the sample, To validatethis

metho<lolcgy,itisessentialto establishthat the miss ratiosof the samples truly represent

the behaviorof the continuous trace.Our objectiveisto determine the number of samples

which isadequate to representany program, irrespectiveof the nature of the program or

the leng_ of the trace.We willalsoshow thatthe number of samples isthe factorto be

consideredfor sampling,ratherthan the sampling interval.Therefore,to validatethistech-

nique,dilCerentnumber of samples are consideredover d_erent LISP programs and statisti-

cal techniques_ appliedto compare the distributionof the sampled dam with thatof the

actualctW.ributionof the miss ratio.In the nezl section,di_erent -_'pectsof the simula-

tionsperformed are outlined.
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4. $LmuJatiom= Performed

4.1. Trac_ Used

The tracesof virtualaddresseswere collectedby running the compiled code of Fr_n_

LISPprogrants on a VAX-III780. These are continuous traceswhich were latersampled at

various intervalsand sizesand then simulated. The programs chosen are realisticwork-

loads of varied nature. The nature of the programs and the lengthsof the corresponding

tracesare listedbelow:.

(I) FSIM :Fault Simulation program :Langth "_ 2,9 million.

(2) DRC :DesignRule Check program for VLSI layout :I..ngth""5.7 million.

(3) ELI :EnglishLanguage Interpreterprogram :Length "" 1.8 million.

(4) RRL :Mathematical Rewrite Rule Lab program :Length == 2.0 million.

These tracesare collectedby running only part of these programs because of practical

limitations.But they are of varied lengthand we will show thatour methodology holds

good independent of thisvariationof trace length,so that thismethod can be ipphed to

tracesof entireprograms also.

4.2. Size and Number of Samples

Three differentsample sizeswere used : 5K. 10K and 20K of _ddresses. They are

chosen to be of the same order as the typicaltask intervalon VAXes [9].

Itis known thatabout 30 samples give a good estimateof any normally distributed

data. At the beginning,we staxt_ with the assumption Llmt the distributionof the cache

mi_ ratioisnormal which isfound laternot to hold good in genertl.But. nonetheless,the

numbers of samples selectedare (1) about 20. (2) about 35. The resultsof thesetwo tam-

pied cases J.-ecompared with that of the continuous trace.We wiD show t.lmtIbout 35

samples are always found adequate to predictthe actualmiss distributionwith reasonable



accuracy.

4.3. Architecture Simulated

The architectural model has three level memory hierarchy : virtual, main and cache_

We consider tea/address cacJue: the virtual address is first t,,_nsla_d to real address of the

main memory which is subsequently mapped to the cache address space.

The main memory is organized into pages. The physical page frames are numbered

sequentially as they are allotted. FIFO (First In First Out) policy is used for page replace-

merit. The cache memory is set-_rs_ve and its blocks are replaced according to Least

Recently Used (LRU) policy. Cache is updated by no-a/Zoc_e policy i.e., during a write-

miss, only the main memory is updated and it is not counted as a cache miss [10].

The goal of this paper is to develop a new method of simulation which is applicable to

all LISP programs, rather than to evaluate the behavior of LISP programs for various archi-

tectures. For that reason, it is sufficient to simulate this architecture only with one set of

hardware parameters. The sizes chosen for the three levels of memory, virtual, main and

cache are respectively 64KB. 16KB and 4KB. The page size in the main memory is 128

bytes. The block size and set size of the cache are kept fixed at 8 bytes and 2.

_L3.1. Approximation

Both the instructions and the data m VAX-II are of variable length. It has been

shown in other studies [9] that most of the times, these lengths are within 4 bytes. Also,

the VAX machine always fetches a block of 4 bytes together from the memory. So. it is

quite reasonable to approximate the length of all the references to 4 bytes. This simplifies

the process of gathering the trace and others [4. II] have also made similar assumptions .

During this simulation, if the address referenced fits exactly in an integral 4-byte boun-

daxy. only one block (of size at least 4 bytes) is fetched. Otherwise if the 4-byte field.
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s'_trting from the current address in the trace, does not coincide with I 4-by_ bounclary

and it also sm-pass_ the end of the current block of the cache, then the next block is also

fetched. In the next section, the results of simulation are presented Lud discussed.

5. 2esult_

Recall that the goal is to show that a sampling scheme can successfully predict not

only the true mean value but aLso the distribution of miss ratio. Note that it is assumed

that a program is running with context switches. To establish the effectiveness of the sam-

piing scheme, we compare the distribution of the sampled data with that of the continuous

trace. As a first step, the mean mud the standard deviation of the miss ratio6 of sampled

data are compared with actual values (Table 1). The term "all" for the number of samples

in the table signifies the results for the continuous trace without any sampling. It is found

that the maximum error in mean miss ratio for number of samples _-- 35 is 5.5%; this error

for about 20 samples can be as high as 13.8%. The standard deviation of miss ratio for

about 35 samples is always very close to its actual value. So. just from the consideration

of mean and standard deviation of the smmples, it can be concluded that with alopro_-

mately 35 samples a good estimate of the mean and the standard deviation is achieved.

The distribution of the continuous trace is compared with that obtained from sampled

trace in Figures 2 through 5. All these figures contain the histograms for the case of about

35 samples and the continuous trace. Figures 2 and 3 also include the case for number of

samples =ffi20. Of all the 12 cases considered, only four are given in these tigures; remain-

ing of them appear in the Appendix. It is very apparent from these figures that in general.

the distribution profile is far from normal. Initially, these distributions can be just checked

for similarity in appear_ce. The cumulative percentages of the sample points in the

different levels, included in the figures, provide additional way of comparing the distribu-



Table 1. Mean & Standard Deviation of Sampled Remflt
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Program

FSIM

Sample

size

Mean miss ratio

(for #samples)

"- 2O _35

.07675K .0743

10K .0576 .0609

.0492 .0513

.0768

20K

5K .0639

ALl

.0781

.06OO

.0505

.0675

%Error in mean

(for #samples)

Std. dev. of miss ratio

(for#samples)

:=2O

.0158

.0137

.0125

.0539

.0115

.0O98

.0443

DRC 10K .O630 .0550 .0582 .0425 .0386

20K .0576 .0512 .0528 .0389 .0349

5K .0819 .0775 .0792 .0452 .0379

.0691

.0616

10KELI

RRL

20K

.0673

.0604

.0416

.0346

.0308

.O680

"" 20 "" 35

4.9 1.8

4.0 -1.5

2.6 -1.6

-13.8 5.3

-8.2 5.5

-9.1 1.9

-3.4 2.1

-1.0 -2.7

-0.3 -2.0

=1.9 -0.2

-0.9 -2.9

-3.2 -2.3

.O6O6

.0424

.0349

.0318

5K

IOK

.0359

.O295

.0354

.O283

.026720K

.0417

.0356

.0315

.0351

.0311

.0332

.O293

.O258

All

.0160

.0131

.0107

.0430

.0389

.0353

.0406

.0343

.0307

.0329

.O286

.O255
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tions. It is found that the distributions of nearly 20 samples have significant difference

from the true ones. But, the profiles of about 3S samples closely resemble the actual shape

in all diferent cases. It is easily shown that the distributions of the samples are statisti-

c,aLly equivalent to the actual ones with a high degree of confidence. Therefore, it is con-

cluded that 3S samples are adequate for this method.

The distribution of the miss ratios provides a lot of information about the program

behavior which is lost when only the mean value is considered. For example, the distribu-

tion of miss ratio is useful in performance analysis of cache memories in multi_rs or

cache memories with a finite write-back buffer. In both cases, a high miss rate hnposes a

relatively higher penalty per m_ss than the penalty per miss at low miss rates. These dis-

tributions for the four programs are quite dififerent from one another; but, for a particular

program, it follows similar trend for the various context switch intervals (i.e., for different

sample sizes in our method). The miss ratio distribution of the DRC program has two dis-

tinct modes while for the FSIM program, it is nearest to the normal distribution among the

four _. This indicates that the miss ratio of the DRC progTam is spread over two

regions which are apart from each other; the region with smaller value corresponds to the

tight loop structures in the program. The miss ratio versus time plot (Fig. 6) for this pro-

gram corroborates this feature. The FSLM program on the other hand has its miss ratio ran-

domly sFread over a single band as found in its miss ratio versus time plot.

5.1. Comparison with Conventional Simulation

In conventional simulation, the measured distribution of the miss ratio can be quite

different from the actual one. The conventional method for cold-start miss ratio can be

considered as simulating consecutive samples with no interval in between. To compare con-

ventional simulation with our method, the distribution of miss ratio of 35 consecutive con-

text switch intervals of size 5K addresses is checked for closene_ with the actual
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disu-ibution of miss ratio for DRC program, because this simulation has the same space-

time cos: as our method. These two distributions are found 1o differ considerably in mean

value, s_ndard deviation and the shape (Fig. 7). This is expected from Figure 6 which

shows that 35 consecutive intervals, each of size 51( cover only a small, initial part of the

program which is very different from the rest. This shows the inadequacy of conventional

method _ represent true program behavior.

6. Evaluation of Other Context Switch Intervalm

In this section, we propose a model of cache behavior for larger context switch inter-

vals, based on the performance measures of smaller intervals. Our aim is 10 perform only

one simulation on samples of one size and statislically project the results for other context

switch iatervals.Once simulation isperformed for samples of a particularsize.informa-

tionabo_t smaller task intervals is ah-eady present in the results. So, only those intervals

which mm greater than the sample size need to be projected. To do that, we will first con-

sider how the mean value of miss ratio over the samples v_'y within the duration of the

sample.

Figure 8 shows the typical plot of mean miss ratio (over different samples) with the

number of address references during the period of the sample size. The value of mean miss

ratio at inch point is calculated by considering the number of hits and misses from the end

of the izmn-val, rather than from the beginning for each rumple. This is done to avoid the

effect of cold start at the beginning of the interval on the later segments of the task inter-

val. TI_ enables us to check if the instantaneous mean miss rate in an interval reaches a

steady vldue as the cache gets more and more filled up. It is observed in all our _.xperiments

that the miss ratio really attains a steady state for su_ciently long samples (as small as 5K
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for all the traces).

6.1. Our Model

Given a sample size n 0 which is long enoush for the mis_ ratio to reach • s_able value.

this sleady slale will continue for the re_ of • la_er task interval n (Pig. 9).

Based on this a_unption, the value of the miss ratio for • larse_ context switch inter-

val n can be easily calculated and is given by :

mCn) no= --mCno')+Ct no)re..
J"l, /"I,

where, re(n) : miss ratio for interval n

m (n o) : miss ratio for interval n o

m= : steady sta_e value of miss ratio

6.2. Results

Based on the formula above, the miss ratio for 20K interval is predicted from that of

5"K and 10K samples for all the traces; also, the miss ratio for 1OK context switch interval

is calculated from that of YK samples (Table 2). It is found that the projected value is rea-

sonably close to the actual value, measured from the continuous trace. However. we are

still in the process of comparing the dis'_butions of the projected miss ratio with the actual

ones. More exhaustive statistical analysis needs to be done to find out how much can the

samples be exumded to larger context switch intervals with reasonable accuracy and to

resolve other related issues.

7. Coacludl 2emarkJ

In this paper, we have established • sampling-based technique for cache memory

simulation. This method provides insight into the true program behavior by giving the
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Table 2. Calculated Miss Ratios for Different Contexx Switch Intervals

Program

FSLM

Context switch

interval

1OK

Actual

measured

miss ratio

.060

Miss ratio calculated

from context switch interval

5K 10K

.062

ELI 10K .067 .067

20K .061 .0615 .0635

RRL 10K .034 .035

20K .030 .0315 .032

20K .051 .053 .054

DRC 10K .057 .061

20K .052 .056 .0525
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accurate estimates of both the mean value of miss ratio and its distribution. In comparison,

conventional techniques just measure the mean miss ratio for one small segment of a pro-

gram; thus, they may not be representative of actual performance. The cost of the

sampling-based method in terms of both memory space and computer time is small. There

is one pathological case in which this technique might not give satisfactory result: this will

happen very rarely when (1) the miss ratio versus time plot of the program has • step-

function, as in Figure 6, (2) the period of this variation is constant and (3) the sampling

interval happens to be the same as this period and all the samples are taken predominantly

at the top or bottom level of the step-function. This can be avoided by taking the samples

at random inte.rvals or by using two sets of samples having two different uniform sampling

intervals. Hence the paper shows that the sampling-based simulation is an accu_te

approach. More measurements with other programs are essential to establish guidelines for

general usage.

Simulating only one set of samples and projecting the result for other context switch

intervals look very promising. But, still some more analysis has to be done regarding this

issue. Another direction in which this research needs to be extended is to separate the

cold-start effect at the beginning of a task interval from the characteristics of the rest of the

interval. Finally. these new simulation methods can be very effectively used not only for

cache memory simulation of LISP programs, they can also be easily extended for other pro-

gram.ruing _a'_gu.*ges.
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PERFORMANCE OF A PARALLEL ALGORITIIM FOR

5"I'ANDARD CELL I)I,ACE,%IENT ON Tile INTFL IIYPER('UIIE

Murk J,ttc._ utld I'rllhvli ,U Ik:r,,.t jcc

N 4 o 0- f._,¢,

Computer ._ystems Group

('ourdinated Science I.ahoratory

L mver.,,ity of I1hnoi:, at Urt)ana-Champalgn

ABSTRACT

In thL,, paper. '_.e present a parallel simulated annealing

Lgorh_hm for standard cell platement that i.,, targeted ko run on

le Intel IlypercuOe \Ve present a now:t tree hroadcastmg stra-

:g- that =._ u.',etl exten.,,_el? an our atgor=thm lot Ul'Xiatmg cell

)ca_lon.,,m the parallelenvlronmenL. Ntutlie_on the performance

I our algorithm o11 example industr_al clrCtllL.'i s|lo_,' that it Is

a_[er _llld glV_'._ lletter IinaJ i_l_lcl'nli'nt re_,ults tit,in the unipritl;t.-._-

tsr _,imulatrd annealing alg_rlLhms

1. INTRODUCTION

(;i_,en a _,eL ot standard cells of constant height and variable

_,ldth. and a net list which de_,cri|'les tl_e interconnections among

he cells, our objective is to pla_'e the cell.,, in a VI.._I layout so as

n minimize tile total length ol _,lre_, mtercunn_.Lmg the cell_

lhe ,,_mulated annealing tei:llnique has Ix-en prolx_.,,ed and apphed

o the placement prohtent in a program _.alled Timt_rWoU" wlllch.

)y appi_,,mg ,.'ell Ji._placement.,; anti exchanges randomly, avoids

,,e!.ting ._{uck at k_cal minima and therei)v acll_eve._ near-optimal

_tatemenL [I.2l. .-_ major limlLaL,on ol "[mll_e.r\Volf i_ tidal it is

:xtremely sto'_,'

Recently. some researchers have started to investigate speed-

.ng up simulated annealing algorithms hy runnm!; them on paral-

lel proce_,sor :_y.sLems. .-1.arts et al h:,ve pror_lxed sclleme_ It)r

!_ar,,lh-h/Hlg _,mlulated allnc;lling aJ_i.ll'ltillil'_ lot several genel';lJ

+l_l_,.'_ til prifi)lenl._ and h;.Ive dL_;t'_l.'ssetl Lhetlretic;ll _t>nver}.;en_e

:haratterlsl.=_s t3l. A parallel alg_)rithm Ior the Traveling _klles-

•nan Problem based on slmulaLetl annealing has been reported l_r

the tH pertuhe I-it Parallel alg<Jr_thms lor partitl,nlng and rouL-

_ng f5}. ma,.ro-¢e!l placement [6]. and tor, ologlcar optlnltzaLion ol

_nuiLtpte level array logic [7] ha',e been prol_)..,,¢d by several
7_e_ I'Ch er:_.

T._,_ rllUJilprotes._;i)r-I)a_.ed _,inltlliltett ;lrlfleiihll_ ,lJg,,irithlll_,.

,._lled \l_,_e l)_-*.,impositl_.)n and I},_r;ttlel _love_,. lot tile _,tatldard

.ell pr_}l}lcnl ila\e been reported hv Rutenhur anti kravltx [_.U].

La:'.;t _ear. Banerlee and Jones, hail pr()r_'_,ed a parallel algt]rithm

Lh_t t._ targeted tO run on a Ilypercul_- tonlpLiter {lO}. .-1,t tile

•,ame Lime. Rose eL al prol'_.',ed two ,,ilgtlrithms. called Ile!.lrisllc

_lpannlng and _tlt)n Annealing. ior standard *.'ell placement ,_n a

_t_rexl memory mi.lltiprote_,,t)r [11].

There are a nunli)er _ll h_sit dillerentes in tile pre,.,lu_,

,_pprtmche_,. The Lirst approach _s a ._hared menlt)ry algorithm

{hat _s nasically simulating a serial simulated annealing env_run-

m,_L hul evaluating each individual move faster. The second

al_l)rithnl is also I)aMd on a sllared melntlry environment but

e_aiuates multiple moves in parallel but accepts only ,_ne move.

Ile_ce. _ts convergence cllaracteristics are i(lent_cal to the unipro-

ces.,or atgt_r;thm In the third case pn, posed hy llanerjee and

Jone.,. the ,_igorlthm is based on a Iota, memory me_._lge-pas_,ing

a.ri_ hitect are: the move.:, are evaluated .1 parallel and

,_lCkll¢*lwh'd_i_lellt: Thl_ r_'_¢ircn _,a_ "lupl_lrlett ,fl plrl hy Ihl' N+lhOllaJ

_,¢r0naul_.'_ ann Si_cr _,dmlni_lrahufl under Contract N-_;,% NAG ] 01d.

uccepted/releeted m parallel on tile ha.slst)l changes _n the cost
IuncLion Jor each move assuming Ihal the tither nlll_e,% are hi.it

made. The thetlreticaI considerations ul _,hether the annealing

prol,,_rtlt._ are '_lllt prr_..rvetl w hen Lhr _l_st *.;llcul.ltitm_, are ha_,ed

on sliglltly Otltd;lL'.'tJ inJtlrnlall_itl alld when _llll _, ,_ r¢_trlkt_od set

ol moves are allowed, m,_y I_e a _,ul')je_.t tit I tltl.lre re.earth.

Ixperimcntally. iL has I_en verilied that the algorithm works
Thl' s¢ht'llll. _ ill litlsi" el al uses ;l ctlfllJlllliltliln ol Itt_llrl_itil. methtl, ls

and SlIIIUIaIt'd ;ll|llt-%lhfll_ tel gain p_.rttlrntance, alltl hi.onl.e (.'anflot tll"

ilil'¢_'tly cllnil%lred "._lth the" lither appril;l,.|ll'.', {h,iI 4re purely

lla._,ciJ iln annl_allll_,

.4 hyr, ercuhe Ltiptllligy conxi._LS Of 1-a processors that are

interconnected through the topology of a tulle in d dimensions.

_everal prototype.'_ ol suctl machines have I_een huih {12. 13}; t,a_o

ol thi.'nl are no'_,' availarlie ctimmerclall,, Irom Inte[ {141. and

A,u¢.tek [15l

In tills paper, we pre_ent an algoriLhnl usint_ simulated

annealing on the hyr_'r(.ut)e that inlprn,,,es ufxm our earlier work

presented in Ill)}. TilisenllaNted algtlrllhm reduces Ihe commtlnl-

cation overhead, can handle more leaLure_,ellthe pl:,_ement pr_)i)-

lem. and is more machine-'_pecific (it is targeted to run on the

Intel liypercuhe). The haSl¢ idea of atlowlng parallel exchange

and displace moves _n dlllerent dm_en.,,ion._ of the Ilypercul)e. and

accepting/telex'Ling moves on the hasls ol th_inl_e_, in ¢o.M lunc-

Litins i_nl)l'in_ thl. i, Ill'_'ls ill llthi, r flillves i'l.nlaili._ llie _,inl¢. Ihl_

I-%,1_I'. sl-%<l'i';ll nl.%i, ttllltl.l_l% vli.rl ° ltiih/t.iI thiit rt.llutetl Ih¢- _illll-

n'iLini*.it{ion overhl';iil _llll._tilnti,lllv tiir !.Ill- tilr_t'lt-d iliat, hlnl-

In _ecttun "l. ,._e will lluthne life h..=nlc algt_rithm. ,le.x_.rihe

lht data r_trll_.t!.lres th;ll ;ire nl'l'exsAir)' to sur, p_irt various parallel

move evaltlaliun._, and tIIhLU_,.% hll%l, tile ",UllLiihkS I_r evaluating

tile act_pt;ll)lht',' oJ paralh'l illll_.e% d,r_" a_',ht_ne#.l. _.li'_"al.%ll pre_,cnl

a no%el tree t)ro,llii.l_,llll_ _.{rale_) Itlr tile il', pi.-r_.Lli)(' that t._ L;_,t.'d

exl.enSlVel_/ in our aigorl[lllll lor Llpt.illtinl_ _.eil ltlCatlon_ in tile

parallel environment t'l_l.'tlt)ll ] descrlh_, titlr ifllplement,lluln ill

the ,llgilrlttlnl ,.ll ;in In{el 11)I_rcut)l" _inll.ll;ittlr \tee rei_lr( tin {tie

perltirnlance ol tlur dlgllrlthfll I,,r several dt.itlaJ standard lirl. till_,

u.xetl in lndu_tr._. \%e _llll_ thai the parallel algorithm glwe_

al_(lut 1()-21)_ ilett_-r final pla*.'ement._ !.ban ctmvenlional tin_pr_-

tl_lil • _,iniulaLed ;lnnealing algorithm.,,. I Inally we pri_¢ni _lilll_-

,ltCllrlttf t'htinl.ltek t)l the exel.'Ull(in ilnlf lllr lhe _ltl._llriLhnl

2. PARALLEL ALGORITHM FOR CELL PLACEMENT

2.1. Overview of parallel algorithm

\l,'e now de_criile ;in algorilhm lor i_rlormlng tile Manllard

tell piucemenl u._in_ a ','arl_tilln ol the'l'iml)_r\V<llf {-_} algorilhnl

lln a hypertuhe ol /,,g(]') ihnlensitlfls tk)nl_el.{ing ]> prtices.sors.

let u._" ,_upp.).',e Lhal we are given lhe pr.hlem ol placing .V ,_tun-
dard cells _vtlere N > > /'
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1

!

%rl!P i Perlurm inntlal cetl a:,.,,l_nment.,, in P proce._.,.or_,.

%1"1P2 I)etermmeinnml temperature.

.%'1"1:13?, \Vhile "Ntoppin_ criterl:_" : teml_'r:lture < O.l mn

reuc I'=¢tI

.VI'I;P 4 Generate new temperature

%TI:P _ For tuner_loop_count = I to NA

S'I'IiP 6. For each dimension i-O Lo log(P)-1 do

STEP 7. Randomly select P/2 moves (exchange or displace) in

parallel among palr_ of I'Es connected in dimension i.

S'I']!P ,_ Check "rangeolimiter _ funcdon in dimension i.

._'I'I!P 9. I!valuaLe change zn co_t for each move between palr._ o1

III _ mdel'_.ndently.

_;1"1'1' lU. Accept/reject muve._ u._mg expi)nentlal l unction

independently

_;'l'l;I _ I I. I|roadcast new cell tocat=ons tl_ all other proce_.,_orx.

_;'I'KP 12 [-_I)F()R: I'NI)I;(H¢: I-NI)WIlIL|;

in the iollowlog xul)_tion:_. _e (le_ rli)e c.ach ,Jl tile ._tep, in

m_)re detail.

2.2. Cell A_signment to Processors

The technique for mappm_ a hpg(]') dimensional hypercube

onto a twoodimen,4ona] area is identical to tile one described in

{]t)}. We will briefly mention the scheme here lor ¢ompletene_._.

In a h4-prc_ex._r hypereube u proce._.'_or h_vin_ a binary addre_.,_

p,p+ p, • p,, L,, conner:ted to pro*;e_.,,or pj,_ p, p,, via

a link I11 i.lin'll_fl,"+ll)n L IbVe prorogue lhal eu+.:h prl)cr_o¢ I_ u_._q_ned

:,n uppro.ximaleJy equal area portion OI the l¢ltal _hlp urea _, hn_..h

can be _=e'_ed a_ a virtual & x _ .,,quare grid I!;l_h virtual grid

corresponds to a horizontal portion ol a number ol row_,. The

cell.,, are _nitlaLly a._i_ne¢l randomly tO ddlerent pro_.'_or,, xu_ll

LhaL each proce._sor ha.,; an approximately equal number ol cell._

a_i_necl to it. The cells within each processor are al._o randomly

placed with n_l re_ard to urea overlap._.._ince all cell._ have con-

stant height, eacil procc_,_or therelore i_ a._,,gned a rect;m_ular

_rtnon ol the _:hip are'-.. The corre.,,F_mden*.'e between proce.,_,,or

addre_.,_ and virtual _;rid re_lon.,_ on Lhe phy._ical chip area ix

._hov_n in Fig. I. I}y choosing such a map. we guarantee that the

processors that are adjacent in a pre-determined set of four

d_men.,,ions of the hypercube ailow [or all nearer North-.%outh-

I:a._t-VVe_ ne_ht_)r (h._place/exchange._. The other two dimen-

sions of the hyr_rcube are used I'or displace/exchanges acro._

larger disLan_.e:_ in the area map. 'l'h=s i,s illustrated in Fig. I.

2.3. Distributed Data Structure

We a.,_ume that each proce:_._ur contains the followin_ infor-

mation to enable the ¢omputaLiun of the cost [`unctnon in parailet

among the pro_e_,_or._ in the hypercube:

(1) A li._t of cells currently a.,,.,;i_ned to Lhi_ proce.'_.sor along '_lth

the I,)ilo_,mg information lot each cell:

{2) The width ol the cell:

{]) The(x.y)_oorUmaLe Iocation ut whl_h lhecenter ol the cell is

_urrently placed:

(4) .A i_t o( net._ to ',_,hich Lhl_ cell IS connected:

iS) }:or each net li.,,ted in (4). a list of other cells, to which the net

ns connected, alon_ w_th the (x.y) pin location(.',;)within the_e

(l_) A Ip, t ol (x.v) h_c:,kll)n._ and w0dth_ ol all cell_ that ,Ire

a.,,,_i_ned tu proce_._or_ that are adjacent in the two dm_en._ion_ vf

Lhe l_ypercube _orre_pondin_ Lo the ]!ast-We._t neare._t ne[_hloor.';

_n the physical area map is also maintained in eaci_ proce_or.

The state of any particular cell is composed o[ the inlorma-

t_on _n (2) throu._h (_S) "_nd i._ packed within a contmuou._ hh_k

ol memory to allow ['or ea,sy packet tran.qer of mformat_nn

i_et_een node._. ]:i_ _ :_hows an examtnie _JI the I}h_:ked memory

data _,Lructure tot ty pIc:,l _ell_.
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• Colt function

The co,,t l unctmn for the _,tandard cell phacement prldllem

i_l._t.,, of tl_ree p,irLs:

]{stimited ,_ire-len_.thu.slng half[the perimeter of" the bound-

box rule.

()verxhoot i_r undershoot of each raw length aver the deslred

length:

' ,Area overl.,p between cell._ in the same row.

,.Moves

Alter tile cellx have been evenly di._trihutetl l)y are.',

_ongst the proce_.sor._ tit" the hypercube, eaLh pr(x.ex-_or repeat-

_y inter:ices with iLs neighl_oring prt_:ex,_ors in each of the d

nen._,)n._ ol the hypercube. The .set ul .steps revolved in a

rallel .,set of moves L-: outlined below. At each time _tep. 1)/2

_rs oft proce._ors particlpate in the evaluating ]'/2 mov, .s.

',()Clfl)URI! PARAI.I.]!I ',I()VI .',;;

"lip 1 For each pair ill prltce_orx (p.q) L'onne,,'ted in dimcn.,,iorl

if the inner_loop_count i.s even and il p < q. then p i_ cho'_n

he the _,lanter. q to tx-" the ._lave. otherwi.,,e vlce ver.,_a.

"lip 2. Ma.,4¢r rand_tmly decide.', !.he tyl-_ t)l tile nmve.

"I'_P3.1. If Mi}VI! = I,NTliR-PIi(X'_I!._5()I{ I{X('IIA.N(;I{. procer,-

r p [Master) randomly _elect._ a cell CIq.l.(p} and _nd.,, ,ts data

"ucture to pro_e_,,or q. "kleanv. hile. proce,_.,,or tI (.'ilave) al_.

neon'ely _,elec't.,, a cell CI!I l.(q) and .send.,, it.,, tlaLa _,Lructure to

o¢ e.,,_o r p.

.}.p 4 1 (?i_mpute_ .......... .(CELL(p).CI_LL(q))-

),_f WL .CI:'L L ( p ]. iY)S ( q ).i, ) + A ,( WI..CEI, I, ( v ). IYLS( _ )v ) _

,l(.,AO .CELL (p),lY)S(p ).p ) ÷ A_(A('J .CEI, L (p).IY)S( q )-q ) +

_,_[.40 CI:'I.LIv )lgJS(g ).q ) -,. D,,tA().CI:I.L(,t ).lY)S(p ).p ) ÷

_,,t I:0 .CI:LI,(p ).l'OS(p ).p ) + A_t iX)CI;I.I.(p ).l'OS(q ).q ) *

,,,(1:O .CI:I.I. {q ).]_OS(,l ) q ) + _-t.(l:O .CI:LL (el).PO.S (/,).p )

"lP 5.1. Proce_,_or q .,,end.,, the _)rtwln ol the co._t luncLatn =t

reputed to proce.,c_r p.

;'l_l I 6.1. (;o to _fFl!P 7

I'I!P 3 2 II XII)VI. = INTRA-I'RIK'I'N.NIiI¢ I X('IIAN(;I:. F,rocer,-

r p (M,l._ter) randlimly .,,elect.,, tw, cells. C1:1.1. i(p ) and

(:Ll.__(p). both wltlnn it_ allocated area map.

FI!P -1.2. Compute 3. ,,,,,,,¢. (CI'LL it p ).CIfI, L2( P )) = _1( WL ? )

._2(..tO.p!. A_tAO .p )

i'['P5.3. Go to 5"I'I!P7

['lip 71.3 II \1(iVl: = {NI'I!R-PI_()('II_S(}I(I)ISPI.A(TI:.MIiXT.

"oce:,_or p (M,lster) _elett_ a cell CI:I I.(p) with po.sitlt)n I'(]_(p)

_d send>, the data r, tru_ture tot ('1 I.l.(p) ah}n g '_,ith the l'xtrtmn

lilt _.t}sI. I l.lnCtllin I1 ha_; cctnlplitctl Lit j'lrlice_.,._lir ( I (_lavek I'ril-

_._,or q ,,elel. t_. a rLlnttom pllsltl_lil I'()N(q ) within ILN ..lre;l nlap at'It]

,naputt_ tile rtn_ainder ol the co_t I uncLltln.

I'I{P 4_1. ('Olllptltt A.t,,#4.,.. (C1:1.1. (I').]'03tv ))

I(WI,.CI:'LI.(p).Iy)._(VJ.V) .i- ,.%,(.'lO.C/:rl. LipJ.lYL_fp).p) ,

I(.lO Ct:LI.(p ).l"OS(q ).,.I ) + 34t1:0 CI:LL (p).l'OS(p).p) ,

,l/:O .CI:.t.L ( y ).tYJS I v ).V )

I'KP 53 (;,_ to '<11{1 _ 7

,_'1"1]' 3.1 11 MIiVI - IN'I'ILA-IqOK'I;.%_()I( I)l,kl'l.a('l MI;N'I.

proce_,,or p r_lnllltlllly selects ,i cell. Cl;'Ll.(p). and a I'Kl.'_ition.

IY)21( 9 ). within it.,, alltlt.utetl urea nlap.

,S'I'KI _ 4.-I Compute A,,,rx.,. (Cl:'l.l,(p)./YJS(p )) - All WI..p ) +
h,.(/lO .p ) "+"A l(l:O .p )

.'i'l'l] _ 7 3,la.,,ter a¢_ept.,,/reject.,, move u._ing exi'xinent_al lunctltln
A(T(Tl!Irl'(A. T)

ICNI) I)II()(TI)L'RI-:

2.5.1. Discussion of moves

Mastership selection

Ft_r each p,llr ell prlltex.,,or_ (p.t I) ¢olmected m dinlens,ln L

one ill them' I.,, cho._en t, lie the Ma.,,ter and the other tit Ix* the

,'ilave u._lng the criteria li.,,tetl in S'I'I!P I to ensure that the

masterslup ol the pair aliernate_ t_etween pnlce_,a_rx in allernate

iterations. The thoil.-e i._ not random as m [ II}] Ix, cause it would

then revolve an extra ille_.%.ige helwe'en tht prl_¢e...,_orx..lnll we

wi._h Ill reduce tile i.limnl!.init-atlltil ,Iverheud a_ fllIJcli a_ _lx.._lliJt.

We ahtrnate nl_i_ler._hip beta. ten _tt, f_llil_n_ ll_'ati_e tllller'_,i._¢ ill

a liletl _i.ht.nle. '#t wlliilll I)la_ tile dlrq_iucuilltnD, i_l ccll._ I rltnl tile

,_ila._ter tli the .%IilV¢ proce'_.tlf re,_Ulllilg in the "_la_itr prltce_kor

having nil cells alter .,everal iterlitltln_.

Selection of move

l'he ratio ill tell tlt._pla_.enlentx hi cell excliangt-._ lia_ a prii-

Iound effect tin the quality ul the hnal placement. l'he Ix-,._t

results were oh.,ier,.,etl tit occur '#hen the r_lfl(it)m ,_election Iavorx

displacements in a rat,v ol approximately 5 to I similar to the

result reI'_rttd in [21 In .iddlt,m. the '_lar, ier dl_.'lde', il tile

ex_.hunge or dl,.,phlcenlent move _i.,lll lie an intra-proi:_,..,tir _i.tllll-

pletely wiLhiil the \la_ter) or inler-proi_e_or (bet,,leen the Xl,ixter

anti tile Slave). I'he ll_t re,.ult._ were oi)_er_,ttl it) el'cur '.then lilt

r'Iunlbtr OI intrLl-_l'li_,¢_:_llf rlloV_,h i_ tqlditi ill the nunll_,r ill

Inlet- priig-eN_,llr nltiVt_

Coil talculallon

_,li'e mew di,i;u._, tile l,'li_,[ I unclhln i.aJl;ulalitln lilt an inlcr-

prolt_,,llr excil,inge, i.t _'l'l!l' 1,1, Will_.h l_ the nllt.M t'llnlpli_attlt

anti ol all tile mii,,'e t) i"_, (The other move c.'th:tilaiitln_ are slnil-

Idl'). \Vt Ilre.ik tll_ tile ta,'_k ill calt.tlldllng tile i.tl._l tl I all inter-

l'lll'll_tk._llr ¢xt.liangt nllive into Ill _ull-tar, k_ lhlil aft" ili_lrihutetl

trill,lily allltlilg lilt M..,,tt-r anti _llllvt, prtl_L-_:_tir_,. ]'ht" lirr.t It.tin.

AI(W1..CI;'LL(p),I'O._'(V),P) tleal._ wlili the change in the wire

lenllth due ell the movement of CI!I I.(p) Irum Pll.%(p) to Ptl,%(q).

This ix i:alculatetl by e_tlntating the change in half[ the i'_'rimeler

of the lx)undmg b_x ol each net. This term can be calculated bv

proceed, or p alone ,,ince _t keer_ inlormatlon about all the nets to

which CI.].I.(p) i_ connected, along with all the (x.y) locations of

cells that are on the xanae netx. anti can read l'()Stq) (which ir_ the

new (x.v) location for ('1!1.1 (p)) from the mex.,_lge sent hy pro-

cer,.,,or q. The term "t_(WLCI-I.I.(,I).IY)S(p) q) relate_, tl_ the

¢liail_j¢ In wire length due Io the ml_vemen! _1 ('FI I(q) Irolll

I'll,%(q) l_ I'(Ik(pI, anil i-_ i.lllllptil¢.ll in ;in illtnll_,ll iliannt.t" hv

prllce_,_,t,r q. "lhe term Al{.'_().C']:.l.,l.I..p).itY).'%'lpl. P ) deal_, _,itil

the i;han_e in the area liberia? due ht the movenl_.nl ,,I ('l:l I(pl

Ittll ill J)( )_(p) ;llltl l,_ c_lJl:ulat,-'tl tl_, ilrol:e_,_¢ir p NIIlkt I| lid', iniilr-

fllalllill ,i[klul all Ilil' cttl_ th,lt ,ire near a gi,.i-n (x.v) hll.llllllil

wiLllin t_roct._.._lir i_ '_, iil'td illap \Vlit'n ('11 I Ipi i_ ililivl-ll _llll ol

t rtllll Io_.,itlOil I'( I_(p). it nll_lll r¢.llltl_, p _.lillle ill till" ,ilt';i ll_.'t'r!at_k

The Lernl A_(,I() Cl:l./.tp )./'O,N(q ).¥ ] deals '_ith the cliil_gt Ill

lhe area tl,.t*Fldp due Ill tilt" RllIvCfllCnL i.,I ('Ill tp) lnttl PI)"liq)

A_lt| I_ _;JicLli,lLei] })) l'lPllcek,_¢lP q _,ll_t_t il llah inJlIPrlld|loi_i alxItit .ill

OF P.'.,_?R QUALITY



the c¢ll_ that are ne',r := given (x.y) lo¢-=th)n w=thm prt_e_.,,)r p's

art-', m.,p. When CELL(p) is moved into locatLon l)().%(p), it

me,hi cre:,te some oi" the area overlap;. The terms A_ _,nd -_,, are

._ml=lar ca K'ulat=ons lur Cl£1.1.(q ). The term

A.(I'.'O .C/'.'LL(? J.IY)S(p ).pI deal.,; with the change in a,.:tua[ row

length compared el> de._ired row length (edge over._ho_t nr

undersht_ot) when ('I:I I (p)=n nlo'_ed out _I P(I.%(p). ,rod ,s _alcu-

l,tt-'d hy pro_es.,,ir p "l'he term ,3._(l:().(/:/./.(j_ ).I'(J3(¥ )._/ ) dL'.Li',

v,'iih tile _.hange m _¢Ige _wersl|¢=ol/Ul'_tI_'1"._iltp_it w hen {'I l l.(p) i',

moved into Pl).%t_lJ+ and L,, _-',l_ulalrd l)y pru_.cx._or q. 'l'h¢ terms,

,3,,_ and 31,, -',re simil_,r calculation.', lor CI!I.I+(H)

2.6. Annealing schedule

In any simulated annealing algorithm, t_t+ iml_)rtant cri-

teria are the choice ill tile mitial temperature _ntl tile rate ol

decrease oi" the tempera_.ure. ]:or the choice ot tile iniLial tem-

t_,rature, we adopted tile heurtst_c thai .,t the initial tempera-

ture.',. _,e _,h_)uld accept ¢_/,, ¢)I all muve_ liar which Lhere =s an

increase in tile co',t function, llent:e, prior to _tartmg the ,_t.tual

._nnea|mg algur_thm, we i;:,h, ulaL¢ the _:hange in ,;_)st I unct_¢)rls l_Jr

l(J x ;V (N - numt_¢r o1 standard cells in tircuit) .,+ingle muv_

w=thin tile llypercut'_+ The average change. A. in calculated Ior

tht_,e mt)_es in ,a,'htch tile t. hanl._e in el)st Is rNl_itlVe. *i'hL% average

i.t):,t _, Lhen u._ed to lind a proper initial teml_'rature:

A

l,t (().')5)

"rhe temperature or tile system is !.hen reduced al tee each

.,d.age of the algorithm according to the cooling schedule given by

7',,, = _(i )T,

_,i_ere o vart_ Irwin1 ().& Lt) ()'.1_ and _l_-'_reas_, ell U.I durmg the

final s_.ages o1 the _]gortLhm. "l'h=s var=aLlon is table-driven.

In order LO enhance con,,ergenee during the later stages ol

the u[£orithm, a range limiting m_dl-',ni.,,m i._ mcurporated .,,lmilar

to [2] .At h_gh teml_rature_ during tile _lmulated anneahnl_ pro-

cesbi. _e do nut restrict the di,,tance o',er whH;h exctlang_ and

di_pt:,cements ol _etl._ can occur. (;radually. a_ the temr_rature

=s decrea:,ed, fur each proee.h-'_or, the range limit is also d_:rea>ed

ac¢ordmgly until eventually _erta=n (hmen._ions =_1 tile hyperculle

are > "l ro/en'. ,e _.h_n_ t_t_,een pairs ol pr,)ce._'_)rs ctmnet.'ted v+a

Illume dtmen_,=tms are ell,_-_lJveiy mhihited+

At each new temperature, the ._y._tem ¢._ allowed tu stahdi,<e.

Tht.,i I.,i -,ccompli.,ihed by collet:tively attempLm_' to generate a u.',er

.,,pe_,lied numlr)er ol new stales per cell at each stage/temperature

of the ._y_tem. The final stopping ,_riter_on t._ _altk_ftett _hen ti_e

temperature reaclle._ a mmlmum value ol (J.l.

2.,'. Broadcasting New Cell Locations

()nee tile cells have heen moved to ne'_ lucat,ons, th¢_,e

updated It_atk)ns have it) he _ent it) all pruce_.,_r_ so thaL thl-y

can update all net anti pin inlormation elrel:ted by the m_lve+ A

very _mple scl_eme wa._ pr_)l_etl in our earlier paler [I()] whicl_

u_,ett _he pr_pertY nl the ex_._tence o1 Ilamtlt_)nian ctrcuiL.,, in the

hyperculx* tUlmH(Igy [161. lath prt+_.e_sl.r wh,_'h had an Lll_lult'tl

cell h,_.+ition '_,otlltl In|orn] its Jlamllilmliln _'ir_.'tll[ _III._++'._NIIr ill

the" t.Iptlatt'tl value ,+I the _ell h++attun This pr=+ct,>.,,m' '_,t+ultl tht'n

H+it>rm at.% ll.tmiltonian t._rt.u=t _uit_e:.c,,or wllich would _I_ Lht"

,_ame. It can he easnI,,' seen that tl all P pruce,,,_ir_, c¢+ntaine¢l

ur_laLed cell locations. ,t will take P t_me ._tep+_ Ior all Lhe

updated cell locations to he available at all I.he pruce_.sors.._inee

each me._.,_a_'e tranMer i_ extremely exr_nMve (it ",_ill he _ho,,vn in

_ct_on 3.2 that ,.while a mo+e _ompuU.iIIon taken itpproximalely

21J-30 mdh_ec_)nd._, a me_,sa_e tran,,ler I)etwern two atlial._nt

node._ taken about "I-4 m_lllsecond._) we decided to at_ndon this

s_mple scheme and adapt a more complicaLed but extremely

efficient one

In the new _,cheme. cacl_ pro_e_sor having a xet ul new cell

h_cations hrt+adcasts this ,nlornlaLlun to all its Iog(l') ne_ghl'xlrs m

the first time step along it.,, link_ in h_g(P) dimensions In the

next time step. tile prL_¢_._or_ that have just recewed the_ mes-

sages l'r(m_ tile iir._t tlllle step. l_)r_,ard the messages to their o'_n

neighbors _unne_ted via link_ m tile h=_;her mum i_g(P)-i-I

dimen._lun._ _,here ,equals the dimens_tln ol tile link along,_hi,;h

a i]l_+'",_.ilgl,' ',A'.I_ l't'+.L'l\t'tl +h.lrln_ tilt" lir_,t Ilnlf _,[ep In lhe ] tlllle

•qt'p .If i+i_+_",'.,_*_ rt'_t'=_ +ng lll+.._sa_es l rtllll the ]-I" llnle P+h'p

I t)rw%irlI_ t hf itlt'_.'.;t_t'. _, I(i l ht.lr llt'ik:hl)_iP, in t he hl_her rllo_l

Iog(l')-*-I dmlen._,on_, '_,here ,,gas eHuaI_, tile dmlen'_tt)n t_l tilt"

lank idung which a mc.-,._a_e '_.as rece_'d durmg tile j--I" t=nle

step In tile c'asr ill mult_ple intt,'-,l proees+_t)rs wanting to broi, d-

cast n+¢_thl'_ed cell l_,'at,ms, the mes._ge_, are t:_lmhinetl where

needed at mtermed_ate re+des he[ore Ittrwarding. 'l'his ._heme

gtlarantee_ titter the I)riladl.'asting is tompleted in Io_(P) time steps

without conllicts Ior links. I:ig. "in slto_.'s a .'i,-dimensitmal hyper °

_.'ui)e with lal)el_, _n proce',sing nt+dt.'_ and links. J:ig. "1h _,ho_,+. ,, the

_tepN invt_Ivetl ill tH'_atK'a',tmg updated +ell It),..Jlion._ lronl pro_,'e_,-

_,+r_, I. 2. and 7 _'h++h aru laI+It-d to as Me. \12. and %17 m l;tg.

The cntrw_ m l:ig. 3h are ol Ihe l_)rm Mill.k) which

repre.'_nts a n_e._.lge _lltch or,_tnated I'rtlm prtl,_¢_.,,.l_r /', during

the lirsl, time slep and gluing I rt_m prt)*._._.',t_r I' tt_ I'_ during tile

current time step. I,ir example, in t.ne step 2. nie_sage M7(/_.4)

whll;h has orlgtnatt.tl I rtJnl /'? I_ tran_inlittetl Iron pft_e._.',ur ]'l, tu

/'+ along a dinlensttm I link. It can t_ verilied that all mes._ag_
reat.'h all pr¢_=¢_,,ors withm 3 time _ter_+ In ca_,e t:f conflicts fur

usin_ a part_ul:,r link at a particular time step. m_._ge_ are

_onlhln_tl. I:tlr _._anll+l_ _n t,me sLep 2. link 19 lla._ twn nle_._age_

_I 1(O.4 ) and M2(ll..l i _, hlch reprt,'_rlt illeNNagt._ originating t rtlnl

prt)¢es.%ors /'l and /'_ t)uL _tlillg I ton1 ]',+ tll /'4 during time slep 2.

r_ unltlul" I¢iii11r¢, _ll tlur all_llrllhnl is thiil _lnl;e ini-.-i,'_a_l's art"

_._lllt}lllell I_r tl'all.%llll_.Sltll_l over a partl_.u]ar hnk, they Ii_l.,tl nuL

t:_ _plit up at intel'nl_dla[f ntl¢le_ lot [ranNnllS?llun t},ver _eparate

link._. The prtlce_,, tll uptlating cell Io_ation_ will take parL al all

nlltte_, I1) exLractin_ inlornlaLiun I'rllnl the' recelvetl nll'_._,,ig_'.,,i and

LlSinl_ ttll,_ inlofllldll()n ttl lllllllii v legal c'ell _trul, llire_.

Fit; 3a..4 ]-dimenxional h/F_rcuil_.
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M2(2.3)
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M 7( 7.(, )

*17(().4)

M I(O..I) M2(O.4)
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MI{3.7) "M2(3.71-

M2( 1.51

M7(7.31

M2(2.61 M7(6.2) :MIL2A))

I_g 3h Ilruad_'ast stepslor a 3-dm_ensmnal hyl_r_:ube

on a me._,,age from nutle_, I. 2. and 7.

ALGORITIIM IMPLEMENTATION AND PI_RFORMANCE

The a0Valltage t)l" our algorathm over "l'inllx-rWoll i.,, theft it

much Ia>ter. We have implemented tile algorithm in at'slut

OO lines ol C code. Due to ,,he unavailability uf an actual In(el

l_rcul_ at the present time at the University of Illinois. initial

ling of this algorithm has been _ompleted using Lhe lntel il_/(;

nulator running on a ._L;N 3/30 workstation system under

_'IX -12 [17]. Initial algorithm test,ng has only been attempted

a small .,,,;ale due tu exce.,..,qve simulator execuLion Lime_.

. Placement results

It should he noted I.hul. in the parallel annealing .scheme.

ce we have deviated l-rot the serial acceptance of move_i, we

_not a.s,sume the convergence properties of the annealing algo-

hms to he vahd. The theureGcal _unvergen_e properties are

II a subje{t ol luture r_;eurch. 11owever. we have experi-

:nted with a wide varJety of standard cell circuits, some ol

llch were randomly generated, others '_,ere obtamed from

Justry and uni_,ersihes.

In "raOte 1. we show the results ol our parallel placement

_orithm on a 4-dimensional hypercube for four standard cell

cu=_. We have also implemented a umproce_,-,_or version of the

n_lat_t annealing algorilhm which is slightly simpler lhan

mheeWoll in that the only move.-, that are allowed are

,hallg_-%_ _ll'lll dl_.pJal.Cll%el%tS dnd OllJy .'_t;|ll(lard _;¢JJs are halldh.'d

._ macro-cell,, or pad.',) At ¢at;h Lemperature ol tile annealmg

oeess, approximately 10() new states were attempted per cell.

_r parallel algor=thm awes a final placement _'ust that _s IO-2(}_.

tLer.

We st.udJed the elle_t ol the parallel _,=mulated anneahng at

:h teml_rature. We validatedemp=rt_'ally that even though we

e perlorming tile a_cept.x,'reJe_'ts on tile hasls ol outdated mlor-

_,l_,ln, our algoritllfll has the same general <unvergence property

the unlprocessor algorithm. I:rom our studies, we observed

at in the initial stales of the algorithm ( higher temper:,tures), a

:ge percentage of both types of moves are accepted As the

"nperaLure _s decreased, the percentage of acceptances both types

"ranie 1. Final placement wiring length comparison.

L'n ipnlce_.,_or Percen (age

('l'imber Wt)ll } improvement

32135 10%

numt)_r 4-d=m

cells Ilypercube

64 2(_24_,

1h 3 ¢,3094

[ 2,S*, ')()77S

4(,U _ i .5() 7.59

764 9,_ 2 I%

I 153._9 I 19_,

I l')_x),) L 2Z_,

of moves decreases. Jlowever, at extremely h)_ temperatures.

tile percentage ol a_.ceptanc_ ol (hspJa_:en_ents mcreases with

pr;t_ti_.'ally nt) ,,:<el)lan_.'e toe e.x_.'h;mge.,,, The in_.'rea.,_. In ilte

;l_,'_.eptill1_.e ol d_spla_.'ements ls p)'imarily due hl only tnl.ril-

proce_.sor displacements .l_emg attempted as governed I)y tile

implemen.ted range littler

3.'2-. Timing E_timates

._ince we ¢lid Ill.It I_ave acce._,, tu an lntel Ilypercube at tile

University ol Ilhnois to evaluate tile '_peetlup _)1 our algt)rlthnl.

we present here ;in estHnate ol the eXlX'_ted st_'edup The Intel

Simulator do_._ nl_l give any tmlmg m] ormatton h)r me_xage _om-

IIItlnlCiltlon _,_I till|lOg hit% Ill I_ eNlllnaJ.ell I rOlll other sources The

rLlnnlllg tlllle _lJ our algorithm ¢lep.'lltl_, lln tM_'ll _,eparilte Ltllll-

r_)lleflts_ ('tllllptltiltll)n ;iii¢l ('lll|lflll.lrll_.'il|ll)fl _l_'e will presell|

estimates t)l I)_)Lh in Lh_. Ioihlwing se_tmns

Computation

To evaluale tile _l)mputation <osl per move (exdlange and

dtspla_'e ment), we i,nplemented t)ur algorithm on a .;ingle pn_ce_,-

sor ol the In|el hyl_-rculx" s_mulatt)r We perl,)rmed ItXX} ran

dot tlloves Ol t)t_Lll the exchange ;ii1¢| chspJa_.¢n%ent _.'J;.l.'_'., ,anti

evaluated an average computation time. The ('I(X'K command

in tile silnlllator gives the running time tin the ma_-hlne on which

the simulator is running, which was a .NL'X ]/30 work.',tainln

usmg a Motorola l)h(120 ('_I)U which i_, rated to i_ 2.TMIPs [1,%]

The Int¢l llypercul_ Nodes consist ol Intel /_()2M) ('l)L:s which

have Ik_en rel_lrted to I_' O.7_,MII)s[IU] t)r 33 times Mower than

the Motorola f)_(12() ll)r the types ol _l)mputat_on perlormed ,n

our algorithm. Ilence. the computatu)n hme per move on Ihe

Intel Ilypercuhe was eshmated to he as shown m "rahle 2.

"['aOle 2. (7omputatlon l.lmes (milhs_'nnds) on hyr'erculx* node.

cells l)isp.

[ i

l)4 I 3 !

I 1_3 _(41

3o _
: _,()( ) . --i_'-

- _ _s7-

I)_spla_e lixchange I"xch.
",,1 _ Xl '_

9 12 21 112 ')

12 13 i .%t) I 24 21

t3 21 33 ] 27 24

i_. __:l 55 _,_!

Communicat ion costs

\Ve will use tilt" ic_ults t,I _.t,lllt. ° t)_.'ll¢.ttlll_ll'k x|¢l¢ll¢'N IM'I'-

IOl'lllt'tl [1_, i¢er¢l ;llltl (;l'llll'_.llil at t|It' L tllVel'slt') _ii ilhllop, _)I_

_.mnmun._._tt.u_ _t.-,ts on the Inh'l il'_(" [2Of rht. re,,ull.s .)re ,,um-

nl;trt/ed tn 112 ,I which .qtows the delay in translcr .I mt_x_.e_

of varymg s_xe lot simultanet)us exchanges anti un,dlr_'tional

nl_,.,,age translers ah)ng a hnk . We lherelt)re need to e.',tm_ate

what the average pa¢.ket st._e will )',e Ior dillerent L)r_s of nl¢_-

Nages in order to determme _omnlunl_at_tm _.osl.x. l)ltring the dis-

trtt)uLed cost calculatmn phase, the entire data structure for a

candidate cell _s sent to a netghhormg proce.,<,_or over a smgle link

m the hypercut)e. 'l'ahle 3 shows the range ot me.-,xage slze_ lot

varu)us size standard cell ctr_.'utts an(l corresp, nding communJca-

t_()n t_mes dero, ed Irom Fig 4.

Expected Speedup

I|y combining the,,e ttmmg results anti takmg ,nip account

tilt" pdr;lJJeJt_n% ll%VtllVell m tile cal_.lllatlon +,)l tile mt_ve _.'_)_,t. tile

tllne to itlrnplele _';l_,h +it tile lout l Vp¢_ _II lllt)Vt'_ x_;ls _.,ll,_ulaLed

OI_I_tNAL PA(._E IS

O_ _r?r',,+"-, c',.+,,:+'_),TY



"l'anle 3. I!+n;tinlatlun of communlcat+oo co._L_

I rom siz_ ol • me._ag¢_.

numher Me.,,.,,age lenglh (hyte_) hnk

_etL,, rain I max I av_ delay

0.1 9') I 68_ t 448 2.8 ms

1_3 _l_ I 7'72 272 2.5 ms

2M_ 36 I /144 214 2.4 mn

f 469 7/) j 724 250 2.5 ms
8iX) 08 I 1732 473 2.8 ins

t 2357 31) 7'72 254 2.5 mst

which will ix` the hnttleneck in terms ol timing. The time to

c,mplete tht.se 32 mu_e.', and uIxtate will Ix-I_etwern 51.2 ms anti

')7 7 nls tlt'l_'tltliny _n updaLe hroall_ast tlmln_ I'llr a tmipr,,.v.,,-

_tlr vt, r_,.,i, in ill Ibis. ,iJg_,irithln lilt" .t2 nlttvt,', "b x_'ill I_.. th_,;lrilltltet| iii

a ._ It) I ratio I_t'_eL'n di.._pla_elllent.,, alibi exchang_._. (_onlputa-

tional time will thus h¢ 2.%6 x 33 • tL4 × 33 * ll_ = IO72 m._

with tile ad(htlonal 16 ms added fur time to complete ut'xlatlng ill

_ell :,tructure_ In the h_percuhe this updatiog is done whde

W,llLing i,r kOfllltltifllt';Itltin.',. L._,lng lht_l., rt'NtlJts tile eNllnl;l|etJ

_pcetlup ol tile Inlel hyiR.rcuJx- twt..r tht" Ulllproce_,.;or verb, ion will

Ix* _mlewhere iwtx,,een I I and 21. Nix-e(lup estimates lot Lilt'

other standard circuit.,, are given m Table 5.

l,,I)te 4. I sLlmate ,)1 time to el,replete tile lot. tyr, e_, ,1

mo_e_ an milli-se[t)nds uning Intel hyperculx-

II kl Ill l )_.'r

_ells

6-I

183

2M,

4hU

8IX)

2357

Intra

l)l.,,piace

f.s,o

24.t)

3t).t)

3t) O

33.17

33J1

Inter

I)_splace

15 J,

l_i.I

24.o

27:)

27.1,

3Or)

hit ra- - ! - [,_t[',---
l:xchan_e l!xcl,,an_e

21 .t) I 1,52,

3t).O 27.1

33.O 3t).o

33.o 3O.O

33:) 33,¢.

39.O 33.o

i.
g

.1
|

..................

Picket Size (bytes)

l"ig. 4. I.mk delay fur various packetsi/es.

an glwen in l'ahle 4, The Lime requ_rt-(t It) hr{lath.a.,,t updated _etl

inlormaLton has been shown in ._tk.1 2.7 Lo r_qutre only log(I')

communication steps. A complete broadcast cycle Ior a 6-

dimensional hypercube should therelore require 18.2 mllln-

.,,econds. L*nfortunately. each node in the Intel IlypercuOe n._ nut

at'fie to actb, ely use all ol _t._ Iog(l )) links at the same time due tl)

archite_;tural hmitatlt)ns Thus the actual numlk_r ,)1 simulUme-

ou,, messages Lhat _'an 13e tran.,.mitted/received will he nomex_ here

between 2 and Log(P) In tile worst case only a snngleexchangetd

data hetv.een pru_es._mg nodes can o_.cur ttence a _onIpJe(¢ hroa{I-

_.a._t _:y_le Ior a b-tlnmenstonal hypercuhe will require 64.7 mllh o

._e_und_

Lsing th_e estimates we can determine Lhe expected

speedup ol our parallel algoruthm over a similar unipro_¢sxor ver-

sion. If our algoriLhm _,'ere to be run on a 6-dimensional hyper-

,uOe using the _(X)-cell standard circuit then at each iterat_un 12

parallel moves '._dl 10e attempted• It is to be expected that at

least one ol these move_ '.viii be. an intra-pruceh.,,ur exchange

4. CONCLUSIONS

In thin I_.tl_.'r wv ha_,¢ prt-st'nl,',l ,I parallt.I vernl,,ll (,I Iht"

-,mlul.ih',l ,tllllt*AtlllJ. 1 l_,'i, hlll,tLl_." I ,r sol v in)_ I hi" st;milard _ell pl.l_e

nlt.,nL prt,llleln Lha| i.% targ_..ted Ill run in a local melllory nle._sal_e

passing parallel pro_e._stng envirtmment, namely tile I lypercut_e

computer. We have pre_nted an improved algorithm that

redu_;es tile c_.)lllnloflicatitln overhead. _an hantlle more I¢aturL'_ of

tile platernest proi)lem, anti in sr_e_.-ilically targeted tit run tin the

InLel Ily[_'r,_uI_'. We have pre_ent_l a novel tree I)road_.asimg

_irutegy fur Lht. hyI_'r_iIx- tilat in u._ed ¢.xten._iv¢ly in our all._o-

rithnl It)r Lll'lda.tink _ cell Iocat,on._ in tile p:,rallel envlr,lnnlent. _.'e

have implemented the a]gurithm on an Intel hypercuhe simulator.

We rer)orted on the performance oi" our algorithm on actual _tan-

tlartl ceils used in industry. We also prL,._ented ._me accuraLe

estimates ol the execut=on Lime Ior the algoritilm. Our algt)rlLhm

will not give rise to oscillations because we have a number ol

celLs assigned to each pn_e_sor, and cells are chosen randomly for

i'_.,,.,dhle exchange. L'nlike the ¢onvenLional array algorithm:_ for

module placement, our propo._ed algorithm will thus not get

Muck at local mininla. The i_snihllity ol _'hoosing tile same I'_tlr

(11 cells for repeated exchange (,):_.'lllatlons) ix very low. ('ell

exL'han_es can he l'_,rlornle(I among ne:lrest nelghlxlrs thrt)u_Jl our

novel area mapping techn,que and alxo I)etween cells that are

'l',hle 5. 'l'ime t,, complete 32 nl,)v_._ m mllli-._rci)ntl.,_.

n u m I-,er un t proce_,,or 6-dim. CLII)e spe_lu p

cells mio max min max

l 1,4 528 392 85.7 h.2 13.5

! l_s3 _17 48. -) U.I.7 ,_i.6 17.17

2M, ')UI 51.2 97.7 It}.l IU.4

• ')*)3 Sl.2 ')7.7 IO.2 IU..I

-- M_-_'--- IO72 51.2 ')7 7 II.O 2iJq

[ " 2._._---) 11o2 57.2 I()3.7 IO.(, I')3

large ,hstaocc_ away The re,,uhs show th:lt ottr parallel algo-

l"it11,11 is not OllJV lister hut also _Ives I_.'tlcr lin,_J placement

result:, than lilt" urllpr,)_.t'.xn_r ,,IntLllatet| ;,nnt.alillg algorilhlli_.

I'tlturt" i'esedrc[I II1VOIveN evilitlatln_ tile ;ll_tlrlihnl on till

actual intel Ilyperculx'. It would ix, interesting ltl explore tile

mipact ol dillerent hypercuOe architecture.-, such as tile

N('LIII!/IIL the Ametek N¢14 u_ltt tile Cahech MARK II on our

aJg_)rlLIim. \Ve are also mvestlgatin_ )mpr,)ved parallet algtl-

rlthms that reduce the communication cost.,,. Eventually. we plan

to devetop an integrated placement anti rout)ng package ,)n the

I ly pc,cube.
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ABSTRACT

The simulated annealing technique has been applied exten-

sively in recent years to find globally minimum cost solutions to

very large optimization problems. In VLSI design the primary

optimization problem involves the placement of standard logic

cells in such a way that the total length of required wire inter-

connecting the cells isminimized. Several recent papers have

paraNelizeci the simulated annealing placement algorithm in an

attempt to reduce execution tLme. It has been shown that these

parallel algorithm_ are not only f_er but also converge to a

more optimal final placement than a similar uniprocessor version.

This paper proposes a unilm'oce_r version of the simulated

annealing placement algorithm which is based on the results

obtained from parallelization of the simulated annealing algo-

rithm. A modified generate function is proposed to allow for

ncnunifcrmly distributed dLqcances over which exchange and dis-

placement moves can ta.ke place: this technique is called mu2zi-

windowing. Multiple cell movements are considered before

updating cell placement data. hence the cost calculations are

based on slightly outdated placement data. This technique is

referred to as ps_u/o-,m_-a/._l rr_vex. This new algorithm has been

implemented and has been found to achieve better final placement
values than conventional simulated annealing algorithms.

L INTRODUCTION

Simulated annealing, a general purpose method of mul-

tivariate optimi2ation, has been applied extensively in recent

years to find globally minimum cost solutions to very large

optimization problems [1]. In VLSI design, this technique has

been applied to the problem of placing standard logic cells in a

VLSI chip so that the total interconnection wire length is minim-

ized [2.3.4]. Theoretical studies have shown that a global

optimum can be reached with probability one provided a set of
conditions on the annealing schedule are satisfied. The real disad-

vantage of the simulated annealing approach is the massive com-

puting time required to converge to an optimal solution. Various

approaches have been proposed to speed up the simulated anneal-

ing process.
In the fi.rs-t approach, careful control of the annealing pro-

ce_ Ls used to improve the computing time [5]. Theoretical _u-

dies have been directed at deriving optimal cooling schedules on

the basis of viewing the annealing process as Markov chains [6, 7].

A second approach to reduce the computing time is to employ
clever move-sets based on the idea of range limiting or changes in

the cost function to reduce the chances of generating a next state

that is going to be rejected [3,8,9]. A third approach is to inves-

tigate technique_ for speeding up simulated annealing algorithms
by running them on parallel proce_or systems [10. I I, 12.13.14].

Ackacwledg_eau _ail _earefl wu lupporlt_l in part by _he Nai!o_ai
Ae.'onaulic_ *LadSpa¢_ AdmlaLs_ratioa under Coatricl NASA NAG 1-613.
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Many of th¢_ parallel algorithms have been found to be consid-

erably faster, and to converge to a final placement which is better

than uniprocessor simulated annealing algorithms that attempt

aggressive cooling schedules to reduce computing times. The

better performance of the parallel algorithms appears to be

caused by the constrain_ the parallel implementations place on

the distances over which moves can occur and the use of slightly

outdated cell placement information caused by multiple interact-

ing moves being accepted at each parallel iteration.

In this paper, we present an improved uniprocessor standard

ceil placement algorithm that takes advantage of the performance

enhancements that appear to come from parallelizing the unipro-

ce_or simulated annealing algorithm. Two important differences

between this algorithm and the previously reported uniprocessor

algorithms are incorporated: (I) a modified generate function is

proposed to allow for nonuniformly distributed distances over

which exchange and displacement moves can take place: this tech-

nique is called rm_i-wir_owing: (2) multiple cell movements are

considered before updating cell placement data. hence the cost

calculations are based on slightly outdated placement data; this

;echnique is referred to as pseudo-parallel rnove_.

2. R.EV'IEW OF P_ A.LGORITI-LM ON H'YPERC_"BE

Before going into the details of the new uniprocessor algo-

rithm, we will review the parallel simulated annealing algorithm

on a hypercube multiprocessor to motivate the choice of various

heuristics [14]. Each proce_or in the hypercube is s,'_signed an

approximately equal ares portion of the total chip area which can

be viewed as a virtual square grid. The correspondence bet,_,een
processor addre_es and grid points on the physical chip area is

chosen such that the processors that are adjacent in a predeter=

mined set of four dimensions of the hypercube allow all nearest

North-South-East-West neighbor ceil dLsvtacemen_ or exchanges.

The remaining dimensions of the hypercube are used for dis_iace-

ments or exchanges across larger d_s_nces in the area map. After
the ceils bare been evenly distributed among the processors. P/2

pairs of processors perform inter-processor or antra-processor cell

exchange or displacement moves for each dimension of the hyper-

cube. The res_ of the annealing algorithm is very similar to the

conventional simulated annealing algorithms.

Observations

Two poinm differentiate this parallel algorithm from the

corresponding serial algorithm. First. the parallel moves are

accepted or re_ected a._-uming that there is no interaction between
moves. The estimate of the cos_ of a move is based on outdated

information because it is assumed that cells in other processors do

not move while a cell is being considered for a move by a proces-

sor. However. the information is never allowed to be very out-

dated t:_:au,_ after completion of P/2 pairs of moves, the ne'v

cell locations are broadcasl '.o all processors in '.hehypercube.

Second. ceil exchanges and displacements are only allowed

between proce_or_ (and therefore :o corresponding area roofs)

P"RIEIOING PAGE [gLANK NOT FILMED



that are directly connected by the hypercube topology. In a

uniprocessor algorithm, a cell can potentially be moved to any

other location in the chip in a single move. Hence. the parallel

algorithm has a restricted set of moves.

We have experimentally observed [14] that in spite of the

differences between the parallel and serial algorithms, the parallel

algorithm gives better final placements /or the san_ coo/ing

sched_._. We have also observed that the quality of the solution

improves as the number of processors of the hypereube increases

for the same cooling schedule. It is obvious that given sutncient

time. the serial algorithms would converge to the same optimal

solution. In practice, one can rarely afford the large computing

resources that are required of such serial algorithms. Hence, for

a_ressive cooling schedules, there is a possibility of these serial

algorithms not reaching the global optimum.

3. L'_H)ROVED UNIPROCES,SOR ALGORJTI-L'_

[n this section, we propose a new heuristic for a serial simu-

lated _nnealing algorithm that would model the above charac-

teristics of the parallel algorithm and thereby try to achieve simi-

tar improvements in the quality of the final solution. An outline

of the improved uniproc_sor simulated ann_ling algorithm is
given below.

STEP I. WHILE "Stopping criteria" not reached

STEP 2. Generate new temperature

STEP 3. FOR irm_loop_cnt - I to user_param

ST_P 4. Generate new move uSing multi-windowing technique

ST_P 5. Evaluate/accept/reject move

STEP 6, IF number of accepted moves equals LIMIT

TI'LEN update all saved cell positions and 7.ero number of

accepted moves counter

ELSE increment accepted moves counter _d _ve cell move-

merits in temporary storage

Two points distinguish it from the conventional simulated

axmealing algorithms for cell placement: the concepts of multi-

windowing and pseudo-] parallel moves.

Use of M_tiwindowing

In the parallel versions of the simulated annealing place-

ment algorithm, it appears that movement of cells should be

biased so that they are restricted more tO their local vicinity. We

can model this phenomenon in a uniproce¢_or by complex win-

dowmg techniques and distance probability di_ributions.. For

example, in F!g. i. if cell M was picked to perform a displace-

J

' [] 'i i
I i

l

_:_2............

fraction of example probability
Max Dimension size within window

I 120 X 10 25%

2/3 I 72 X 60 25%

window

W1

W2

W3 I/3 i 36 X 30 5O%

Fig. I. Example use of windowing for

determining cell movement for cell M.

ment. a simple triple windowing scheme could be used to deter-

mine where the cell will be displaced to. The outermost window

(WI) is always equal to the physical work space of the circuit.

The inner windows. W2 and W3. have sizes proportional to 2/3

and 1/3 of the physical work space and are centered about cell M.

In order to favor local movement, the probability of being in the

innermost window (W3) is made greater than being in the outer

windows. ]:or example, cell M may have a 50% probability that

its proposed new position will be within the innermost window

W3. a 2.S% probability of being within window W2 but not win-

dow W3. and a 25% probability of being in the physical work
space but not within windows W2 or W3.

Use of Pseudoparallel Moves

A conditional data update statement has been added in the

proposed algorithm which allows a multiple number of accepted

moves to accumulate before an update of" the circuits placement is

done. This amounts to allowing all moves after the firstsuccess-

ful move determine the cost function on the basis of outdated

placement information, l:or example, in Fig. 2(a). if module MI

is successful in performing a displacement from (x t. Yt) to (x 2.

Y2) during the first iteration of the inner loop. then the circuit

should be as shown in Fig. 2(b). but because Ml's position is not

updated, the remainder of the cells stillcalculate cost functions

which involve M1 as though it were still at position (x t. Yt).

Because of this. if module M2, which is connected to MI via a net

connection, is chosen for an attempted move during iteration two.

then the half-perimeter wiring cost associated with the net will

be computed using the old position of MI. After each move

acceptance, a counter is incre_nented to keep track of the number

of successful moves, since the last cell position.update and the

new positions of the cellsare placed in temporary storage for use

later in updating the cell positions. Random cell selection for

movement in subsequent iterations is not able to select cells

which have made successful moves, but whose positions have not

yet been updated. This mounts to freezing the cell._" positions

Fig. 2(a). Original net placement.

•i......... .......i
i / i Calculated
i _ _ bounding

i_ i box
--.,---, !

: i Actual

..... ?"--', i bo dmgbox
I. ""1

.........................U.=..:..Z_.j

Fig. 2(b). Placement after initialzcceptance.
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until the required number of" moves has been accepted. The

effect of usin_ slightly outdated information appears to give a

higher Frobability of getting out of local minima, since this tech-

nique will accept a higher percentage of moves with uphill

changes in the cost function.

4, RESULTS

The advantage of this algorithm over conventional, unipra-

ces_or simulated armesling algorithms such a.sTimberWolf isthat

it converges to a betL-r finn! rYaceme_t L'_ a given number ef

iter_ticrJ. We have imple_en:ed the e:_.-_t_'-- k,_ :he C

fro.ram/rig la_.Faa_t,eo-a t-S'L%" ?,'.¢0_-.-.-kr.a:'.-.-..r-.'.-_.-.L-.g,-..-.__.--.
L.'%'E_ d2.

y!e m._ves bef.._'e update. L_:_I :as_.L-.g _?.s ...-_..?.__.._J ._. a 64

_L_ cL-:-._it t__atwas ra.r,d:_--...2yrm..-_'.ed ._.':h_:- _t _-aC ._-.,-..e_I

knew'n clusters of high conne_ivity. A _u,'- _L-r o/* t_".s were run

m order to derive the optimal combination cf t_e_e two tech-

niques. The fizstset of tests w_ concerned with determining the

optimal number of moves that should be accepted before cell

updating is performed. Table I shows the final placement cost

associated with waiting for various numbers of multiple moves

before cell placement update. For these tests no windowing was

attempted and thus. movement of cells was unrestricted and uni-

formly distributed. The final placement, cost. was found to

decrease as the number of multiple moves is increased up to s

certain point after which it increased. The optimal solution

occurs when 16 moves have to be accepted before placement

update will OCCULt.

A variety of windowing schemes were experimented with as

shown in Tables 2 through 4. The number and size of windows

for each test vary over a wide range. For example, in the ninth

entry of Table 3. a triple windowing scheme is used with the

largest window being equal to the physical work space, the

second window being equal to 2/3 the size of the ph.wsical work

space, and the third window equal to I/3 the size of the physical

work s'pace. The two smaller windows are centered about the

Table 1. Cost vs number of multiple moves
for 6,* cell circuit.

Numb_ of

MultipleMoves

P_al
Ptaeemen t Cost

1 24125

2 24138

4 24003

8 23984

12

16 23821

24 2417.,I

32 24829

Percer_ tiq_e

Chanl[e
-O.0%

*0.1%

-O.3%

-O.6qb

2.]924

-1.3%
*0.2%

*2._b

Table 2. ComparLson of cost vs. distribution

for (I : V,) double window.

,'Numb_

Wlndow_

Window Sizes

u Fraclion

• f ma_

Dbtribution of F_nai
moves in Windows Coal

t 100% 23821

1 : _ 50% : 50% 24017

1 : _ 3.]%: 67% 2.]71.$

1 : Va 25% : 75% 22783

1 : _a 20% : 80_ 22893

I : _ O_ : 100% 23990

Percent [
Chance

-l.J%

-O.4_

-I.7%

-5.6%

-3.1%

-0.6%

Table 3. Comparison of cost vs distribution

for (I : 2/3 : I/3) triple window.

Number Window Sizes
Windovs u Pra¢tJoo

of m_z

I 1

3 ] ! :2/3: I/J

3 I I : 2/J : l,'J

I:,7.,/3:1/!

3 i I : L'J : 1,'3

-_ , I :2.3:1.3

3 l:/3:l 2 ,

move_ io Windows Cost Chan_

10¢% 22821 -IJqt

17qt,:35_:zS_ 2_1654 ] -L_
l_ : 2_'_" : 6.4_. 2J I 0,I -4.2%

1 .'_ : 2.'_ : ?.'_. i :.a:_ _ _'

J I :Z,.]: D'J _ m_. : 2_r : _$u,x...

_''i" 4 , .°_¢_, ,

2"f,,13 -_"2._'_

3 i I :L3:l,J [ .e_.:t.-_:._2_. i "_,'21 _ .1.'*

Table 4. Comparison of cost vs distribution

for (I : ¥_ : ½ : _) quadruple window.

Number
Windows

Window Siz_ Distribution of Final
u Fraction moves In W;ndo_v_ Cost

of max

I 100% 23821

1 :_:%:_ 10% : 20% : 30% : 40% 23764

1 : I/. : % : _. 9% : 18% : 27%: 46% 23521

I :_k:%:_ _%:16%:24%:52% 23902

t :_:%:_* 8%:16%:32%:44% 23782

I::a:%:_ 6%:12%224%:.,¢8% 22813

I : _ : % : V. 5% : loq_ : 20% : 6.$% 21032

1 : _ : % : v, 4% : 8% : 12% : 76% 22314

I : s_:_'_: _& 0%:12%:24%:64% I 234.]1

I I:_:V_:_ 0%:10%:20%:70% [ 229_6

i

1 t_ _ : _k t 0% : 6% : 24% : 70_ 7..3007

Percent

C_angc

-h3%

-1.3%

-2-3_

-0.9%

-1.4%

-5.4%

-12.8%

-7.3%

-2.9%

-4,9%

candidate cell for movement. The _robability of a cell moving to
within each of these windows but not smaller _ubwindows is dis-

tributed as 8%, 24%. and 68% respectiveiy. The final cost using

this windowing scheme is 21643 which is 10.2% less than would

be derived by an algorithm which does not use multiple moves or

windowing.

Several generalized results were observed from our studies.

all of which cannot be presented for space limitations. [n com-

paring results of studies with double windowing for different

relative sizes of the inner window, the final placements tended to

decidedly inferior where the inner windows are not

significantly smaller than the physical work space. This is in
agreement with an earlier observation that the movement of cell q

should be localized to the ares immediately surrounding the cell.

[n all the windowing schemes, better performance is generally

obtained as the percentage of localized moves is increased. It

appears that a larger number of windows will give _he best final

placement results if the probability of movement farther away

from the initial position decreases at least linearly with distance.

The best final placement was obtained using a quadruple win-

dowing technique with 16 multiple moves before update.

A few of the more promising windowing schemes were

applied to a larger standard cell circuit obtained from UC Berke-

ley which has 183 cells and is required to be placed in 13 rows

with a desired row length of 1398 units. We rsn our program on

a SUN 3/50 workstation and compared our re,rults with the Tim-

berWolf3.2 program with the global routing option _ppressed

and row se!_aration set to zero. The coolLag schedule for all _be

programs was the same. The initial temperature was 4.000.OOG;

the inner-loop count set to 18300; ,.he temperature reductions

were identical to those of Timberwoff3.2. The version of our

progrsm with a single window and cell updates after every too; •
(fu-strow in Table 5) is similar to TimberWolf3.2. However, as

_5



Table 5. Comparison among various versLons and
TlmberWolf3.2 for aa example 183 cell circuit.

Number
moves

1

16

16

16

Timb3.2

Number Final Time
windows Cost (set.)

1 78775 44605

1 87851 44496

2 77657 51584

4 73000 56374

73566 9669

can be seen from the comparisons of running times between our
program and TimberWolf3.2. our implementation is much

slower. This is because the whole program wa.i implemented
rather crudely by a student in two months. We did not use any
clever programming techniques that are u.sed in TimberWolf3.2

to speed up the program. The purpose of our study was to
demons_ate that our algorithm gets the the same approximate
result u TimberWoLf3.2 without multi-windowing and pseudo-
parallel moves and then show the effect of the'¢e heuri,_ics.

CONCLUSIONS

This paper has proposed an improved uniprocessor simu-
Lated annealing placement algorithm which is based on the res-dlta
obtained from parallelization of the simulated armealing algo-
rithm proposed earlier by us and other re_.archerl. These

features involve incorporating two techniques: multi-windowing
and p_udo-partllel moves. A variety of windowing schemes and
ill@ Ill wllit|OWlll h@ve [_g_|l _Jtlcit_iveiy |ethical. i'¢_lilltl o| _tlltlO it|"

Wltl_|t havI Uracil ral_ttt_ ill thii pat_mr. It aViNgamh that a lasses"

number of windows will give the be_t rlnalplacement rc_ul;_if
the probability of movement farthGr away from the initial
position decrea.s_.at least linearly with distance. The best final

placement wu obtained using a quadruple windowing technique
with 16 multiple moves before update. Our re,alas show that the
algorithm is better (in terms of fia_alplacement quality for a fixed
number of moves) than conventional algorithm&
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ABSTRACT

C-Prolog can conveniently be used for logical inferences on knowledge bases. However, as similar
to many search methods using backward chaining, a large number of redundant computation may be pro-
duced in recursive calks. To overcome bhis problem, we have designed the "rid-redundant" procedure to
rid all redundant computations in running multi-recursive procedures. Experimental results obtained for
C-Prolog on the Vax 1I/'780 computer show that there is an order of magnitude improvement in the run-
ning time and solvable problem size.

KEYWORDS: Backward chaining, C-Prolog, mulfi-recarsive procedures, redundancy.

I. INTRODUCTION

Previous research indicated that efficiency is one of the critical factors that affect the practicality of
logic programming as a software engineering methodology [6,7,8,9,10]. One of the reasons that degrade
efficiency is the many redundant computations that are often associated with a backward chaining search
method. In this paper we study the elimination of redundant computations in C-Prolog programs.

In the C-Prolog interpreter, the inference engine always selects in each step the leftmost unevaluated
subgoal in the current goal and matches clauses in the order of appearance in the proof'am text [1,..,-,].
According to this standard control strategy, there are a lot of repeated redundant computations in running
recursive procedures.

Example 1. The C-Prolog program for p(N,A), which represents the predicate "N'th Fibonacci
number is A," is as follows.

C1: p(1,1).
C2: p(2,1).
C3: p(N,A) :- N1 is N-l, N2 is N-2, p(NI,A1), O(N2,A2), A is AI+A2.

For simplicity, we use the following C3' instead of C3, although it is invalid in C-Prolog.
C3': p(_',A) :- p(N-I,A1), p(N-2,A2), A is AI+A2.

In evaluating p(5,A) using the C-Proleg interpreter, the following computations will be produced. "
[?- p(5,A).

Invoking C3' under the unifier {5/N], we get

visiting t-.searchscholarfrom Departmentof Cornl_ate.rScience,,rEnanUniverstty.,C.uangz.h_,PR.CMrut

Researchsupportedby Nauonii AercmauucsandSptce AdramistrattonGrant NAG1-613.
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? p(4,A1), p(3,?_2.), A is AI+A2.

_yoking C3' under the unifier [4/_, A1/A}, we get
? p(3,,_11), p(2,AI2), A1 is A1 l+A12, p(3,A2), A is AI+A2.

Here, p(3,X) is evaluated twice: the result of first time is in All, and the result of second time is in A2.

The number of repeated computations will increase greatly when N increases. This increases the running
time and reduces the solvable problem size.

There are two methods to eliminate these redundant computations. First, the interpreter [11] can be
revised, so it checks every subgoal before evaluating it to determine whether it has been evaluated before.
The subgoai will be evaluated and results stored in a knowledge base if it has not been evaluated before. If

results of the subgoai are already available in the knowledge base clue to a previous evaluation, they will be
accessed. The run-time overhead of this method is high, as every subgoal evaluated has to be checked. A

second method is to determine by a pre-interpreter all possible redundant predicates before the program is
executed. The determination of results already evaluated during execution is similar to that of the first
method. Naughton has rew.enfly proved that detecting and removing-redundant predicates is undecidable in

general; that is, there is no algorithm that will find and remove all redundant predicates in an arbitrary C-
Prolog program in effective time and space [12]. For a subclass of single-recursive procedures or linear-

recursive procedures, which are procedures that only call themselves once in their definitions, he presented
a linear-time algorithm to detect and remove redundant predicates [13]. In this paper we discuss the case
of multi-recursive procedures. These ate procedures that invoke themselves more than once in their

definitions. As we are studying the simple case of procedures that call themselves recursively, the
identification of possible redundant predicates is trivial, and the second method degenerates into the first
method. The technique that we will use is similar to that of dominance in dynamic programming algo-
rithms [5].

2. THE "RID-REDUNDAN'T" PROCEDURE

The "rid-redundant" procedure is written in C-Prolog and is called with the following form.
rid-redundant([Q,M,X],M0).

where Q, M, and M0 are its input parameters, and X is its output parameter. Q represents the given multi-
recursive procedure, which must be defined in C-Prolog. M indicates the variable of recursion in the given
multi-recursive procedure. M0 is the maximum of the variable M in _e all facts of the definition of the
given multi-recursive procedure. M0 is said to be cardinal of the given multi-recursive procedure. X is the

output of the given multi-recursive procedure, which can be in any valid data type. For instance, Q, M,
M0. and X in Example 1 are p, N, 2, and A, respectively.

The methodology to eliminate redundant computations is as follows.

(1) Design all clauses in the target program using C-Prolog.

(2) If one subgoai calls a clause with head p(N,A) that is multi-recursive and has cardinal NO, that is,
p(N,A) invokes itself in its definition, then "p(N,A)" is replaced at the calling point by "rid-
redundant([p,N,A],N0)."

(3) If the initial query invokes subgoal q(N,A), which is a multi-recursive procedure and has cardinal NO.
then "q(N,A)" is replaced by "rid-redundant([q,N,A],N0)."

3. IMPLEMENTATION

The "rid-redundant" procedure, rid-redundam([Q,M,X],M0), is appended to the original C-Prolog"
program as a built-in predicate. It is wntIen in C-Prolog itself. Before it is used, we need consult it. The
basic algorithm is as follows.

Algorithm RID:

(1) Read the values of Q, M, M0. Suppose that the value of Q is q.
(2) If M < M0, then call q(M,X) and exit.
(3) K:= M0+I.
(_,) If K '¢ M, then

(a) Call q(K,Xk).

Co) Insert q(K.Xk_ to the knowledge base as the current first clause for subgoal q.
(c) K:= K+1.

(d) Go to Step (.:,).
(_ Call q(M,X).
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(6) K :=M.
(7) If K > M0, then

(a) Erase q(K,Xk) from the knowledge base.
(b) K := K-1.
(c) Go to (7).

(8) Exit.

The C-Prolog program for the "rid-redundant" procedure is as follows.
rid-redundant([Q,M,Xl,M0) :- M=<M0, F=..[Q,M,X], call_-).
rid-redundant([Q,M,X],M0) :- M>M0, K is M0+I, add([Q,K,Xk],M),

F=..[Q,M,X], call(F), delete([Q_M,Xm],M0).
add([Q,K,Xk],M) :- K=<M, Y=..[Q,K,Xk], call(Y), asserta(Y), K1 is K+I, !, add([Q,K1 _Xkl],M).
add([Q,K,Xk],M) :- K>M.

delete([Q,K,Xk],M0) :- K>M0, Z=..[Q,K,Xk], retract(Z), K0 is K-1, !, delete([Q,K0,Xk0],M0).
delete([Q,K,Xk],M0) :- K=<M0.

4. EXPERIMENTAL RESULTS

We have implemented and tested the above "rid-redundant" procedure in C-Proiog running on a
VAX 11/780 computer. In our experiments, the following statements were added to print the CPU time
used in the computation of p(N,A).

I% T1 is cputime, pt2'4,A), T2 is cputime.
where T1 is the CPU time used in seconds before running p(N,A) since C-Prolog was started, and T2 is the
CPU time used after running p(N,A). The difference between T2 and T1 is the CPU time of running
p(N,a).

In evaluating p(17,A) in Example l, 6.1 seconds were needed, while 0.3333 seconds were needed to

run rid-redundant([p,17,A],2). The speed is, therefore, increased by 18.5 times. On the other hand, run-
ning p(18,A) results in "out of local stack," but rid-redundant([p,184,A],2) can be evaluated successfully.
Hence, the solvable problem size is increased by 184/17=10.8 times.

The following examples were also triect.

Example 2.
q(1,l).
q(2,1).
q(3,1).

q(N,B) :- N1 is N-l, N2 is N-2, N3 is N-3, q(N1,B 1), q(N2,B2), q(N3,B3), B is BI+B2+B3.
The CPU time of running q(15,B) is 6.2666 seconds, but the CPU time of running rid-
redundant([q,15,B],3) is only 0.3 seconds. Hence the running speed is increased by 20.9 times. On the
other hand, running q(16,B) results in out of local stack, but rid-redundant([q,146,B],3) can be successfully
run. So the solvable problem size is increased by 146/15=9.7 times.

Example 3.
sO,l).
s(2,10).
s(N,D) :- N1 is N-1, N2 is N-2, s(N1,D1), s_N2,D2), D is (DI+D2)t2.

The CPU time of running s(17,C) is 6.8666 seconds, while the CPU time of running rid-
redundant([s,17,C],2) is only 0.35 seconds. Hence, the running speed is increased by 19.6 times. On the
other hand. running s(18,C) results in out of local stack, but rid-redundant([s,1000,C],2) can be run, so the
solvable problem size is increased by 1000/17=58.8 times.

Example 4.
nN,A) :- p(N,B), q(N,C), A is B+C.
rl(N,A) :- nd-redundant([p,N,B],2), rid-redundant([q,N',C],3), A is B+C.

where p, q are the same as in Examples 1 and 2, respectively. In our experiment, the CPU time of running
r(14,D) is 4.88 seconds, but the CPU time of running r1(14,D) is only 0.533 seconds. The running __peedis
increased by 9.15 times. On the other hand, running rtl5,D) results in out of local stack, but rl(146,D) can
run well, so the solvable problem size is increased by 146/14= 10.4 times.
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5. DISCUSSION

Sometimes, the calling of non-multi-recursive procedures can also result in repeated computations.
An example is shown below.

Example 5.
f(c).
f(a).
gCo).
s(a,b).
p(X,Y) :- q(X,Y), t('X,Y).
q(x,Y) :- fix3, g(Y).
t(x,Y3 :- fix), s(X,Y).

In invoking p(X,Y), the current goal will become
fix), g(Y), fix3, s(X,Y).

which results in fiX) evaluated twice.

Sometime, redundant computations produced by non-multi-re, cursive procedures in C-Prolog may be
aseful, and they should not be eliminated. The following example illustrates this point.

Example 6.
g(a).
t(a).
tCo).
s(c).
p(X,Y) :- q(X'), r(Y), g(Xg.
q(x) :_g(x), t(x3. --
flY) :- asserta(g(b)), remact(g(a)), s(Y).

If we query the initial goal
17-p(X,Y).

'..henat some moment in running this program, the current goal will become
? g(X'),t(X'),r(Y),g(X).

At this moment, the Prolog interpreter will have to solve g(X) twice, but we cart.not rid any one of them.

Suppose that G1 and G2 are two subgoals of goal G; suppose further that G1 and G2 are the same
predicate, if the built-in predicate "asserts" ("assert,a," "assertz"), or "retract" appears between G1 and
G2 in G, or another subgoal Gi between G1 and G2 calls "assert" ("assert& .... assertz") or "retract"
directly or indirectly, then, m general, we can not eliminate either G1 or G2, although they are repeated.

6. CONCLUSIONS

The above experimental results show that the "rid-redundant" procedure can increase the running
speed by more than ten times, and can increase the solvable problem size by about ten times for multi-
recursive procedures in C-Prolog we have tested. For non-multi-recursive procedure in C-prolog, the
"rid-redundant" procedure does not have any side effects.
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1. Introduction

1.I. Motivation for our r_earch

Prolog programs tend to b,_ inefficient. In executh'_g a program, Prolog w:-fol_ns a depth-first

L_avcr_l of an AND/OR gr-aph [t0]. Prolog will often tra'_er:..;e _,,'eral iargc st:bg_:phs, c.ach

corresponding to a goal, only to fail on a later goal. On fNlure, Prolog backtracks, r_eking anot_hcr

wa? to _tisf;,' a conjunction of goals, and the subgraphs mta,;t be _.archcd again. F_xpcrienccd Pmlog

programmers, when they can, arrange Prolog clauses _ tttm inex_nsivc goals that are lik¢ty to fail (

e.g., tests) are ne,_ the beginning of a clause [I5]: if a test fails, the rest of a clau_ need r_-_t be

evaluated. Similarly, they put c_uscs last whose h_,4s arc uNikely to match a query to their predi-

cat2..

Even for small programs, programmers are not always able to detem_ine the best goal or clause

order. If some clauses of a predicate or goals of a clm.tse seem to have simit_ costs and like.liho<xLs of

success, a programmer will write them in the order he fir_ds most comprehensible, which may may be a

ve©, poor order indcezl. As programs grow larger and more cocnplcx, it will often be difficult to

cho, ose be',weea orders: readability ,;-'ill win if it does not apwar to slow a program down.

1.2. Defining the problem

We want to reorder Prolog clauses and goals to minimize, or at least reduce, the extx_cte4 cost of

evaluating a query. (We measures this as number of prccticate eails; CPU time is too imprecise, but

numk'er of unifications would do.) The process shou!d require little inters'cation from the u_r. The

reordered program it generates need not be foiTnally equivalent to the original, but must still be correct

in some sense: for instance, if a query has multiple answers, it might be acceptable for the altered

predisates to infer d_em h'_a different order, but not to generate a different _t of answers.

1.3. Assumptions and definitions

We assume t,'m: the reader has such knowledge of Proleg as could be acquired by' reading the

first few chapters of Clocksin and Mdlish {3] or Slerling and Shapiro [15]. All e×amples ,,,,,ill be in the



&"facto stmndard DEC- I 0 Prolog {I a ] notation.

Our analysis and reordering programs are written in Prolog itself. Intermediate results from

analysis programs are expre&sed as Prolog fact.z, as are any user directives to our syst_n.

A predicate with name narr, e and nun>,_r of arguments ariry will often be referlvd to

rwune/ari;y. A variable not bound to ,an atom or functor is uninstantiated or free; otherwise it is instan-

tiated or bound. A tuple of insmntiations co_es_-ix)nding to Lhe arguments of a goal is calie.d a trade:

we will ._.ay that a gin.1 calls a ppcx:licate in a par',icular mode and returns from it in (usually) another. If

a predicate will not function with certain arguments uninstan6ated or in certain modes ( i.e., it pro-

duces a run-time error, or goes into an hafinite revussion), we _y that it demands a particular instantia-

tion or mode.

A predicate that performs _ action that i_sunrelated to the logic of a program and that cannot be

undone by backtracldng has a side-effec:: sometimes ',he predicate is cared extra-logical. Built-in

predicates that do I?O or modify the progr_,xn have sidc-effecl_s. A program ispure ff it uses no buih-in

predicates, approximating theoretical logic progrmnming, though under Prolog's execution mechanism

i15]. Our tectmiques are not limited to pure Pmlog, ttlough we do assume that the program we are res-

tructuring is free of errors. In general, we perforrn no trarksformation that might generate an incorrect

program, and our system will ask the user to provide information it cannot derive.

We will treat certain built-in predicates cursc:'ily; vie., those that take conjunctions of goals as

arguments: no¢11 and the set-pre.dicates bag@'3 and setofl3. In general, their arguments, if compound,

may be reordered ia siru. We assume that no variable goals, whether written explicitly or using call�I,

are present. We do not consider asserted and reuacted chuses. All theseproblems are beyond the

scope of this paper.

1.4. An example of improvement

An example should help clarify what we ',,,'ant to do. Suppo_ we have a family tree expressed

in Prolog. Tlaree preA,icates determine relationships: wife�2, tnather?2, and female/1. The fact

_4fe(johndar.e). means that John and Jane are marne<l, m,other(johndoan), means ',hat Joan is John's



mother,andfe_a.leldan),m_msthatJanis female,ferrk'_!e.'] is used ,only if a female ks not a wife or a

mot_hcr: if we assume no il!egi'dmatc births,fc_zale(i_,'o,,'r_n). - vt,fe(_y,"orr_z,,), will account for mar-

ried wome,q (_e underscore is IJ_e :_on),nwus vca'U_5te ). Thus some_une is female, if she is smu?zl to t_-:

female, or if she ks a wife.

We have a large cellez'tion of '&e above f_:.s, and _e following pr,'.xSc'_._es:

g randrrzot he;( GC, G ,J4) .- g,, andpar eru,(G C,G M ), fem.aie( G M ).

gra_ent( GC,G P ) :- par er, t( P,GP ), pareru'( GC.P ).

parent(C.P).- mother(C,P).
pare_(C,P):- rnotherf C.Af), wife(P,Al).

The que_ :- grnndrra_;her(.X,Y), will find _I t_he grandmo'Ser-g_&hild pairs; however, in

each case it will first find a grandparent-grandchild paL-, suitably instantiatLng the variables GC and

GM, and about ha!f the time promptly reject ik Changing the first clause m

grar_,dm_tharr( GC,G ?,I) :- fcrns:le( G M ), grandparent( GC,G M ).

will probably reduce -he cost: ferr:nle/1 will be solved in at most t_'o calls, w._ereck_ graz_arenz/2 can

take far mcre. Note aL_o that female/I iasuantiates GM and thus the mode of grandr._arent,'2: the goal

is less costly _use we need con_-idc.r fewer poss_ilir.ies. Unless only a tiny fraction of the female.s

in the database are grandmothers, the. reordering makc'-s sexist.

1.5, Previous work

Warren [18] present_ a method for reordering goals of conjunctive queries. The queries were

translations by a natural Language I.x.u-_r of questions in English: a user typed in a question about

geography, and the parser generated a query whose goals followed tlm order of the words in the ques-

tion. Unfortunately, this order was often inefficient for que@ng the database. Warren assigned each

mode of each predica_ a numbec the factor by whict: the goal multiplies the. number of alternatives

the sb's_.em must consider. (A goat country(C), C unirksmntiated, multiplies the possibilities by the

number of couna-ies in the datab..:.e - about 150. With C instantiaa'd, the goal serves as a test: it

redt.ccs the m:mL_sr of possibilities m_d I2_erefore r_-_eives a value le._s than I.) Warren used a simple



functiontoestimatethisnumber:dividethenumberof tuplesof (answersto)apredicatebythepro_

ductof thesizesof thedornaimsofeachinstantiatedpositionin t,hccallingmode.(If borders/2 -- one

countsy borders anodmr -- has 900 tuple.s, wi_h each argument having a domain of 150 countries, the

function gives 900 for an uninstantiated call, 6 for a p_u-fly-in.%_pti_tesJ call, and 0.0-1 for a fully-

instantmted call.) In some c._,ses this yield,',:cl a sIx_dup of _veml hundred _im_ over the original ver-

sion.

Warren re.ordered only top-level conjunctive queries. We have experimented with reordering "all

the predicates of simple, nearly pure Prolog programs ( i.e., a few built-in predicates, but none with

side-effects) such as family trees. We tailor a version of the pmclicate to each mode, renaming both

the new version and the goals that call it. "Ibis replaces a predicate with a _t of new predicates, one

for each mode: _ if all of its modes are used. (The arity is usually two for a family tree.) Speed-

ups are typicaily 5 to 40, and rarely under 1 (slowdow-ns): somewha: bettca" than Warren's, consider-

ing that our database of f_ts is about ml order of magnitude smaller than his.

Both Warren's method and our extension have drawbacks. Finding a good heuristic measure to

guide reordering is not e.ae;y: it should be inexpensive to ev_uate, yet take both probabiiity and cost of

goals into account. Though it seems to be effective, Warren's function takes account only of bow

many solutions the predicate has, not how much it costs to find them. Further, domain size for an

argument is problematic even for database programs [I 8]. Worse, evaluating the function is expensive

for the extended method: we have to call each predicam, forciag tel:eared backtracking, and coum the

number of solution-tuples. Such a method is hardly practiml even for "toy" problems like family trees,

and is useless for predicates fl_at require unpredictable instantiated arguments or handle data structure.s.

A promising method has been presented by Li and Wah [10]. Prolog clauses are modelled as

Marker chains, so that the success probability and expected cost of a clause can be computed if they

are known for each of its goals. The goals can be reordered to minimize COSL Cost and probability,

data are generated as a by-product of reordering, so that we nee.,d only provide them for ground clauses

and let the information propagate upwards. Because :his method fonns the basis of ours, we will

describe it in detail D.tcr.



1.6.ApproachandgoalsofthisIsaper

Wedc,_:rit_thep_oblcmof inclT>.icats_h moreprs_ci._]y,andc_Dn._ddcfthetwotyw_.soi

reordering: clause _md goal. We show how cc,-tain "impure" f_ttnre._ of l:h_olog re._trict movement of

bo_h goals and claus& and how to collect and use information or, restrictions. We look at mcvles and

the restrictions they cau.,ze, comparing the "unditiortaI" mode systean for Pmlog compilers with a new

system of legal modes suited to reordering. We review ways to infer modes automatically, and adapt

or_e method to finding legal modes. Wc extend the idea from the earlier paper [ 10] of modehng PIolog

clause.s or prex_,icatcs as Markov chains. We add impure features and mode re.strictiorus to the model.

and look at the problems and dezails of implementing a r_'al reordering system. We present current

resu!t:, summarize, and suggest both e.,tensions to our me0_o'ks aqd idca_s for futu.'-c work.

Reordering of clauses and goals

We want to reduce the expect_ cost of c,.'aluafing a t'-rolog query' by reordering the elements of

the predicates it calls. Clauses of a predicate and goals of a clau_ may Ix: reordew_x:l, though with cer-

tain restrictions; the two t)I:xzs of reordering are distinct, so that they' do not compete but rather have a

synergistic eff_t.

_1. Reordering of clauses:

In standard Prolog, when a predicate is c.alled its clauses will be tried in the order they are writ-

ten. If the calling goal fails to unify with _e head of a clause., the system tries the next clause. If a

head unifies but the clause fails d_-pite backtracking amongst its goals, the system, again, tries the next

clause. Clause order thereby provides one of the few control mechanisms the programmea" has. In

fact, clause order determines the order in which solutions to a predicate will be found [15], so that

reordering clauses an',oun_ to reordering solutions. If the or_r of solutions to a predicate, is at all

imF, anant, its clauses c_nnot be reordered, and the techniques we discuss cannot be used. TImeefore,

in the rest of this paper we will keep clause reordering in mind, but co_entrate on goal reordering.

We want to put a clause first if ;t is inexpensive and likely to succeed, gq, at we hope to do to

the. _,earch tree is iUus'.mted in Figure 2.!; the t.d_ngIes labe.lod with probabilities represent su_,tvac_,
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with size proporxional to cost, Before restructm-ing, the.re is no particul,zn- order to the subtre.c._ ttzat

corres_'xmde to the clau.w_.s: _e search some large tr_s likely _.) fail ( i.e., u'2,.'costly cLau_w__)before

searching smaller ones likely to succeed (inexpz:nsive clauses). Note lb..at t}e se_trch tree does not

shrink; if we are looking for all solutions to the predicate, we musl .,v:,arch the entire _ any_,vay ",,rod

Mve gained nothing.

Another use of clause reordering is in avoiding futile attempts at unification. For instance, many

list-proceasing predicates handle a list recursivcly, re4"e.atedly dezapimting it; a clause with t)_e empty

list in its head ends the ;ecursion. For example,

length([__/List],Cou.nt,Lengrh):- Count] is Count+ l, length(kLvt,Cout_l J_ength).
length([] J_.engthJ_.ength ).

is in the proper order, though the second clause is far less costly to evaluate tt_an tkm first, it will match

only the empty list. Were it first, the system would atlempt unification on every call. Clause ir,d,z_rAng

[17] cm_ have the .same eff,__ct: at ran-time, the s)'st_ql checks the typ,e of one or morn a__gnmenzs of a

caU (usually just the ftrst) and tries only the clamv,zs whose corresponding arguments might unify' with

the call's. However, unless the indexing system always indexes on the germartc agumenLs, reord_ing

will stiil help to prevent useI_s unifications.

Figure 2.1: Reordering a predicate.



L2. Reorderino of g(_als:

Standard Prolog evaluates t.hc goals of a cLau._ in order from left to right. On failure, it succes-

_vety backtracks, ti_st to atterrLative clau.,<'s of the predicate called by the failing goal, and then to

tho_ of eeAier goals. ( Intelligent bea:kzrackin_ [1] allows Prolog m backtrack to the first [x,-edecc_,;.sor

goal that might _ovide fresh instantiations, avoiding more-rcvent g_mg ,.hat cannot. But il is only a

l-ralliative for our problem: it does not prevent the initiM evaluation _,f expensive goals. Furl.her,.a

complete implementation requires NP-compIete computnfion__ [ 19].) "I'hu__if a clau._ fails, it is best ta

have the culprit goal occur as soon in the clause _ po_o.fible: not only witl later goals nevca- be trie£l,

but le.,;s backtracking will be attempted. Figure 2.2 repre._nts a clause ,_._:m AND/OR txve The origi-

nal version is inefficient: note tlmt if t2_c fina! go_d always fails for a particuta- call, sever",d large sun

tr_s will have I:eam searched (and probably backtracked through) to no avail. The mmsformed ver-

sion puts the ine:_.pensive goal first: if it fails, the larger subtrc_:s will never be triM; if it sucze.ed__, we

have narrowed the possibiliti_ for the la,er, costlier goals.

As with the extended Warren's method we shou!d provide a different vex'sion of each predicate

for each of its modes. In the worst case, nhis will again rep "lace a predicate with a collection of 2_9

preg, icates of the same size. In practice, as we will g_ow, this tends not to occur: predicates of trig,*:

arity can rarely function in more than two or three moges. Fu_n2_crmorc, high arity is considered pc, or

programming style [4], and such predicates can go.net-ally be replace_..d by severel new predicates of

Figure 2.2: Reordering. a clause.



lowera-i[y.Wetradeincr,',_c_dprogramsizefordecre_xtexec,ddontime.

2.3. Necessiti¢_

In order to go beyond "toy" problems and r_ordc_r real P_olog code, we must be able to find re.s-

tricLions on reordering and @ply them to a reordering method. Restrictions are due to recursive and

built-in predicates, and fall into two ctasscs: restrictions on movement and restrictioms due to modes.

Section III is about res_ricdoas on movement. We show how even a single side-effect can make

many reorderings imlyo_sible, and describe the exceptions. Control predicates and recursions tam out

to have milder effects. Section IV is about modes: sI_cific,'flly, the restrictions they cause and a spe-

cial type of mode intended for reordering: the legal rnc_. We also descn'be a metN_ for inferring

legal mode. Section V presents the basic rcordenng med_od, first for a subset of pure Prolog, then for

w..al programs: the information gained by the methods of Secdon.s [II and IV prevents incorrect reord-

e,-ings. The techniques descriNT.d in these _sections work togelher; Figure 2.3 st',ows them as modules

between which variotts pity..es of information flow: pr, Nram code, programmer declarations, m'-_d

information inferred autom2'.ically about program behavior. Note that the system needs to inform the

programmer when it cannot infer certain pro_rties of t2m wogram, or when dec "larafiorts are incon-

sk_tent.
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3. Restrictionsonmovement

3.1.Introduction

Wecannotreorder carelessly. In all but the simple.st programs written in pure Prolog, uncon-

swained reordering is risky: the reordered predicates may give a set of results different from tt_at of the

original, fail when the original succeeds (or vice ver_), or go into an infinite recursion. Certain built-

in predicates have side--effcxxs that cannot be t:ndone by back,_racking; others are de._igne.d to provide

control. Neither can be treated lightly.

3.2. Predicates with side--eff_ts

hlany predicates built into standard dialects of Prolog have side-e_ects: in particular, those tha'

modify the program or do I/O. UO predicates include readdl, write�l, get/l, put/], and most of the

file-handling predicates; predicates that modify a program include assena!l, rerractl2, and abolish.r2.

It happens that goal.s calling the-se predicates are irranobile vdthin a clause; they therefore act a.s bar-

tiers to permutation of other goals. If we have, say, the clause a(X,D:- b(X), cO'), rd, eL(X.Z), e(Z)., we

may exchange bfl and c/1, or d/2 and e/1 (pe_mps both), other circurns'._.nc.e.s w.rmitfing, but we can

do no more. Why not?

Imagine thre,¢ goals a, b, and c witl-dn the body of a chase, b has a side-effect. The variables of

the goals are instantiated enough that any permutation wilt work. Sup .pgse we exchange a and b. Now

during an execution of the clau_se, a fails. But b has already executed. Its side-effect m.nnot be tmdone

by backtracking, and in the origitml program the failure of a would have .,;topped b from being

reached. Similarly, if we exchange b and c, failure of c will prevent b from executing and having its

side-effoct, which it would have done in the original program. Unless we know that a or c is certain to

succee-_ in its mode for this situation, we cannot move b. We may justly call b and predicates like it

fixed predicates, and other predicates mobile.

Clauses of a predicate are also fixed by fixed gozfls, though for a different reason. Suppose tha,

a;, a=, rand a3 arc clau_s of the pry.d/care a, but op,ly a2 contains a goal that writes something. For

now, assume that the ttu'¢c clauses ,kavc identical h_ds. Supix_se we exchange a, and a 2. The

C-3
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iwedicate is called in such a way thin any of the three clauses, wore it _;lccted, would succe.cd. Tiros

a2 succex-_zt-';and wntc.,_, ttad a i been firs:, it would have succeeded whnom wri,.tng. Now a goal cal-

ling a might _ followed -- ixzrhaps ,'_ot imrn,_J.iatcly or even h_ tht; ,.k_m._"clau_ -- by a goal t._t wr-ims.

If so, swapping a I and a z will change the output of the program: a will now write before the other

goal, when in the original it would not have. Thus we cannot move a clause containing a fixed gonI.

But the restriction is actually far wor_ than these exampi_ show. Any predicate that has a

fixed pm_.dicate as a dc.szendant is ik,;elf fix"_. If write/1 within a clause oi the predicate w prints s_wne-

thing, a predicate x that calls _, prints _ well. A predicate y that calls w must also print, and so fo_h.

Thus predicates are responsible for the actions of their descendants: in this way, a single fixed goal

can contaminate most of a program.

Before attempting any reordering, we must find out v,hich Dwxlicates am fix_. \\'e only ne.e_

start at a predicate which is not called by any otha predicates of the program (an entqv or top-level

predicate) and scan its de_esidxnts top4o_;,m, mimicknag program execution. We maintain a Iis-t of

ancestor predicates so that when we reach a goal t,hat calls a fix'cd predicate, we can declare its ance.s-

mrs fixed as well. The infom_ation that a p"a_:ticate is fixed can be as.w.ned, or, better yet, stored in a

partly-instantkated binary tre.e (dictionary) {15]; at the end of the process, the collected information is

written to a file as facts.

3.3. Exceptions to fixing goats

Are fixed goals really ffnmobile? "P,mre are a few unimportant exceptions: they depend on the

neighboring goals and on the nature of the predicate the fixed goal calls. K both the fixed goal and a

neighbor will always succeed in their reslxztive calling mode.s, they can be exchanged -- but nothing

will be gained thereby, sir_ce both are bound to succeed.

If the fixed goal calls a built-in predicate that has a side-effect, nothing can be done; however, if

it calls a user-written predicam there may be hotx:. Certain predicates have clauses that will not

succeed in particukar mode. If the call is to such a predicate in one of these modes, the goal that

makes the predicate fixed is in one of the._ clau_s, and if we can _N:ce..q.ain thnt the ck'm_ will fail
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beforehheculpritgoalis reached,thenthepredicateisnotacmailyfixe_Jfor thatmode.TI_esituation

.seemstoorareandtoocomplicatedtobeworthconsidering.

3.4.Exceptionsto fixing claLLSeS

If clauses are muzually exclusive in a particular mode ( i.e., a call that unities with the head of

one will not unify with the head of the other), the clauses may be swapped in the version of the prcdi-

cam for that mode. However, the clause order still holds over clauses that m_e not mutually exclusive;

we are only filling in for the deficiencies of the clam:c-indexing system.

3.5. Control predicates

Prolog includes control predicates which allow programmers to ,alter its default bch:avior. These

predicates can force or prevent backtracking, provide an if-then-else cor_struct, or simply provide

shorthand r_tafion.

3.5.1. The cut

The cut, written !, is notorious for drastically altering program behavior. When a cut is encoun-

tered as a goal during for-0vard execution, it succeeds immediately. Wt-_n it is re._h-cd during back-

tracking, it acts _ a barrier:, backtracking must stop at the cut, and no other clauses of lhe predicate.

may be tried. Backtracking to a cut generally means that the goal has fail_.

A cut-l_afing clause is usually fixed within its predicate, e,_ially if the cut is red, i.e., it

changes the m__,..aning of the program. Consider this example:

greaterfX,Y,X):- X > Y, /.
greater(X,Y,Y).

If we call greater�3 with its first two arguments instantiated to numbers, it returns the greater numt:_"

in its third argument. If X>Y, it sets the third argument toX: the second clause will not be tried, due

to the cut. Otherwise, the seconcl clause sets the third argument to Y. Such programming is common,

but it is cryptic, as well as incorrect for such queries as ?- greater(5,0,O). If we remove the cut or

swap clauses, greaterl3 becomes nonsense.
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Sometimesapredicatewill consistof _ver'_ctan._e_,c_h witha redcut,followedb)'a fin:d

cta,,,sc.The first clause that matches the calling goal and _cn executes at k_::t up to it:_ cat wil! be Lhc

last clause (if riot the only clause) tried. Usuaily clauses in such prcxlicate.,; :'arc _ur_,ngcd ir order of

their heads' i_lcreasing generality: if two __.ads are '.he _ame e_c_p_ that in one p.:_sition one has a con-

stant and the o_er has a variable, the one wi'& the variable witl come k'_ter k',ecau_x: it matct_es a suIxzr_

set of the calIs the othe matches. We can exchange any two of t!',c ckm_-,c.s having cuts if their he.'_ds do

not both unify with some call of Lhe m:)de in question. If b_)th heads did unify, we would cxecuLe the

wrong clause, possibly the more-gealeral one when we should have used the other for a sW_xzia!cas, e.

In the body of a clause a cut acts Mmost like a fixed goN: it is not mobile, but it d,'xzs not fix the

ancestor predicates of the clause. Though cuts will ,alter our rcordcrir_g heuristic for goa!s, the',, do not

restrict goal reordering as greatly as do fixed goals.

3.52. Disjunctien

A predicate is a disjunction of its clauses. Prolog, however, allows explicit disjunctions within

clauses. !f two clauses have identical he_-ads, we can ,,,,'rite them as one disjunctive clause. For ex'_,m_-

ple,

citizen(X):- native Lorn(X).
citizen(X).'- naturalized(X).

can become

citizen(X):- native born(X) ; natu.ralized(X).,

where the semicolon represents disjunction. This is not always mere shorthand: if unifying a head

with a clause head is particularly expensive, we can use the explicit disjunction to avoid doing it twice.

Also, if two clauses share seve_x'al initial goals, it trays to make the clau.w.s into a single disjunctive

clause. "I'nat way, there is no need to evalua_ the initial goals twice, whe',.her failure occurs in an ini-

tial goal or in the first half of the disjunction.

In the process of re.ordering, we may find it useful to alter a disjunction. Disjunction provides a

"semi-l:_,u-meable" barrier to reorderinf: we cannot simply move goals Ix'.tween the halves of _ dis-
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junction,orbetwe_z_eidersideof adisjunctionandtheoutside.Wecanmoveagoalfromtheoutside

of adisjunctionto its insidebyputtinga separatecopyof it ineachhalf.if it isnot fixedor acut.

Oncethecopyis inside,it canbepermutedwithfileothergoalsof itshalf,withtheusualrestrictions.

Takingthisprocessasfaraspossiblecreamstheequivalentof twoseparateclauses.Similarly,if

duplicatemobilegoalsin the halves of the disjunction can both be moved to the front or back of their

halves, they can be replaced with a single goal outside the disjunction.

What of fir, mobile goals? Coasider a disjunctive prexl.icate of the form a:- b, ( c ; d ), e,f. Mov-

ing b into the disjunction gives a.'- ( b, c : b, d ), e,f. Suppose that b is fixed; we execute this clause

and b succeeds but c fails, b will be executed _ice. If b is a cut and c fails, the entire predicate a will

fail. Thus we cannot move immobile predicates into the front of a disjunction; what about the rear?

Treating e analogously yields a:- b, ( c, e ; d, e ),f. In this case, an immobile e won't mauer (unfor-

tunately, this transformation isn't useful: we gain nothing by moving a fixed goal into the disjunction).

35.3. Implications

Prolog's analog to the/f-then statements of algorithmic languages is the implication. If a sct of

goals p can be satisfied, then try to satisfy a set of goals q: written p -> q. This can be made the first

half of a disjunction, forming an if-then-else. Implication behaves as ffdefined by the clause

P->Q :-P,!,Q.

The then and else parts of an _-then-else can be treated much like any other disjunction: a mobile goal

common to both can be moved before the premise or after the disjunction. (They are also mutually

exclusive -- only one will be executed whea the if-then-else is invoked - which will affect our reorder-

ing heuristic.) The goals of the premise must stay in the premise, however.

3.5.4. Failure-driven loops

In pure Prolog, a failing clause can accomplish nothing, tx.w_use any instantiations it makes to

variables are undone on faSlure. In real implementations, goals can call predicates with side-effects,

which failure cannot undo. For instance, backtracking can allow a failing clause to execute cosily
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queriesrep<'.ltedly,printingtheree;ulLs. Such ccx._c is often ",vnttcn fin- Prolog syst_:ns tlm_ do not have

garbage c_llcctk,n, t>.:causc heap space ks r_laimcd on failure.

Several kinds of faiklrc-drjven Ioo_% am common in Pr_log prog_trns. We cxm force failu;c by

using tk" built-in predica[efai! ; h,_e is an example of a common f_:radigm:

sho_: _:ll.- tczble(X,Y.Z), write((X,)'.Z)), nl, f_u'l.
show--all.

Thks pfint_s out alt the tuplcs of tabIe/3 by finding or_e, printing it and a nc_vlinc, and then failing, which

for'c.es backzracking to find another, w,hen all a_c found, file second clause prcver_Cs the predicate from

failing. Anottmr common con_smact uses the built-in predicate repeat. "I"hLs tml"a>¢cs as if defined by

the clau__es

repeat.- rcpeai.

repca:.

Here is a typical use:

main :-

repeat,
read(Input),
process(lnp u.t.O utpu.t),

write( O_put),

Inyu-t == end_of_fi2e.

"['he predicate reads clauses from a file, creates an output for each, prints it, and then fails unless the

end of the input file has been reached. Failure forces b_ktracking to the repeat, the next clause is

mad, and so forth. In general, goals inside a failure-driven loop must remain there; they may be reor-

dered subject to the limitations of fixed goals. For predicates like the first example, the final clau_

must remain last.

3.55. Negation

The built-in predicate nor�l, also v,Titten M, takes a conjunction of goals as its argument.

behaves as if defin,_ by

_ot(X):- X, �,fail.
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not(X).

When it is called as a goal, it succe_ only'if iL_argumepa falls, not never irk,_tantiates the variables in

its argument, but its argument may demand that certain variables be instantiated. (Trds will require

special treatment during mode inference.) In our present _k, we treat a negation as immobile (r,o

propagation to ancestors), but allow reordering of multiple goals within its argument_

3.5.6. Set predicates The built-in preAicate.s bagofl3 and setofi3 generate Lists of terms that satify

certain properties specified by a conjunction of goals. We allow reordering of the interval goats, as

with not, but treat calls to these predicates as immobile, pending further study.

3.5.7. Recursio_a

Reordering the goals ofa recursive predicate is ofum _e. Consider this example [15] _,viuen

in pure Prolog:

se le ct(X,l X/Xs l,X s).

selectOt',[YIXs],[Y/Ys]):- selectfX,Xs,Ys).

permutation(Xs,[X/Ys ] ):- selec t(X,X s,Zz ), perrnusationUZs,Ys ).
permutation([],[]).

permutationll, given a list as its first argumcnt, produces (on backtracking), all of its permutation.s.

Given a variable instead, it will go into an infinite loop. If we swap the two goals of the first clause of

permutationll, we will get an infinJtc loop if the second m-gument is a variable. Thus, reversing two

goals changes a safe mode for an unsafe ore.

Better implementations of Prolog include some form of tail-recursion optimdzation [17]: sl,ack

space is reclaimed on each tail-rezursive call, saving memory and speeding executing somewhat. It is

tempting to reorder a recursion so that the re,cursive call is final; Debmy [7] has a method that works

for some cases.

Reordering rectrsive clauses is beyond the scope of this paper, for now, we assume that the pro-

grammer declares a predicate recursive and provides necesm_ information to the reorderer. We can

easily det,zct recursion, using a method similar to t_e one for fir_ting fixed predicates: traverse the pro-

gram top-down, keeping a list of predicates being .wanned, arid cbe,ck ff each ne_, goal is a member of
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thelist.

4. Legal modes

4.I. Intr(xluction

Some Pmlog compilers, notably the classic one for the DEC-10 [I.4], allow u.___rs to b-pc:cify the

mc',dc.s in which a predicate will ,N.acalted. The compiler then ne.eAy, to genernte object cc.xle only for

those mtxlcs, c_xxle that will run faster and require less dynamic storage.

Prolog preJicates can often fu_tion in more than one mode. When we rex_rdcr goals, we tmu-

ally change their calling modes; therefore, t_hcmore mod_ we can show to be legal, the more reorder-

ings are Ix__iblc. The usual mode declarations do not tell us what modes are legal, merely which wi!l

be used in the original pr_gram.

What makes a mode legal? A legal mode for a predicate satisfies the demands of the goats in its

clau_s for pa.,-'dcular instantiations, wiuhout which they would generate run-tfium errors or go into

is,finite recursions. We assume that the prog,v'anamc.r knows w,ha.t he is doing, and does not dcliberately

call any predicate in an illegal mode. Wc could Rave the programmer declare cer'adn modes legal, but

this will No. time-comsuming and error-prone: a last re._rt.

4.2. Restrictions due to modes

Fixed predicates shaq_ly reduce the numN:.r of ways that the goals of a clause or the clau__, of a

predicate may be permuted_ Modes place further restrictions uI-_n goal order, but may serve to allow

more clause orders.

4.2.1. Built-in predicates

Many built-in I:a-cdic.ate.s refuse to fur')ct.i(:_ in sl:xne m¢_e.s. They demand that certain of d-,eir

arguments be instantiated, or demand ccr_n mod'_. For example,functorl3 is a built-in paxticate. If

its first argument is a term, it can instantiate its otter arguments to the term's name and arity; similarly,

given a name and number as its lm,t two arguments, it can ccmstruct a new term as its first. Givefunc-

tot onl) a name or arity, and it ,,,,,ill not work: in C-P'rolog [13], for example, it wi!l fml without a
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nameandgivearun-timeerrorwithoutmqarity.

4.2,2.Recursive predicates

Re,cursive vredicates are used chiefly for building or modifying recursive structures such as lists

or trees. Given the wrong modes, they enter unpr_luctivc infinite recursions, or produce infinite sets

of solutions on backtracking. Consider the ubiquitous delete�3.

delete(X,[X/IT,Y).
deIete(U,lX/Y],[X/V]):- delete(U,Y,V).

With an atom as its first argument and a list of atoms as its second, delete can set its third to the list

with one instance of the atom deleted (C-Prolog interpreter):

?- delete(b,[c,b,a,b,c],X).

X = (c,a,b,c] :

X = [c,b,a,c] ;

7tO

("f'ne semicolon, used interactively, forces backpacking.) It functions in several other modes, as well.

However, if only its first argument is instantiaw_& it produces an infinite set of solutions:

7_ delete(b,X,Y).

X = [b/_l]
Y= 1;

X = [_7,b/_9]
Y = 1_7/_91 ;

X = I_7,_14,b/_16]

Y = 1_7,_14/_]61 :

and so forth...

The atom b appears in successive positions of the list X ad infirdtum. (Interestingly, calling delete in

this way with its clauses reversed puts it into an infinite rccursion that returns no results.)

If a new structure is being built ba_m_ on an existing one, the new one is unlikely to have infinite

size. We can require that at least one of _e structures that is modified on each recursive call be instan-
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tiated.Forinstance,fordele:e, this would _. eiLher the second or thi_l _u-gument_ it hapIvens that this i_:

correct. But consider this prexticatc:

--]_VTI.perrn(X,l t , _,.- deZete(U.X,Z), perrru'Z, V).
perW l ],l ] )

The fwst arg_Jmcnt rme.ds to _ instantiatcd bul the .__'cond dc_s nc',t. Tlw, call to _'Iete ,,,,'ill go into an

infinite recursion if X is not instandated. The alive "h(mris'sc", applic4 blindIy, tells m; that o::!y uhe

second argument ne_ds to bc insmntLatcd. Ob_ iousl?' t._ mlc does not hold in gcncral.

Unfortunately, we cannot de.tenninc with certainty what modes will yield infinit,e rezursions. A

solution sufficient for most cases will probably involve r.howing tb_t for a particular mode, a str,_cture

remains essentially unchanged (though _owing ta_er), and nothing in the, clauses of the prcdicam can

alter it [9]. We propo_ that a go_ cNiing an;,' rezu:_ive predicam be consideJ"cd fixed, but without

immobility propagating to its ancestors -- like a cut. T]_e programmer must declare legal modcs (and,

we will see, estimates ef execution cost) for a recur'sire predicate; tbe.se may allow a goal to be moved.

4.3. Mode systems

4.3.1. Traditional

The DEC-10 Prolog compiler [14] ,and many recent commercial compilers allow the program-

mer to specify t/w. modes in which a prezlicate will be called. A compiler directive of the form

•- mode <predica:e> (<modes>).

declares <prech'cate> to have tlm modes rcpre_.sented by the tuple <modes>. <modes> has one e|e-

ment, or mode item, for each argument of the predicate; an element is "+" if t_ argument will always

be instantiated, "-" if it will be uninstantiated, or "?" if it might be either (a declaration whose elements

are all "?" is therefore superfluous [14]). "llae compiler need generate code only for the mode or modes

Cle.clared. Compilation is faster, and th,'., compiled code is more efficient and c_npact.
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4.32. Our sy'stem: legal modes

4.32.1. Traditional versus legal modes

The DEC-10 mode system does not suffice for reordering. We are concerned not with the

modes that ad_ m the original program, but with t_ modes in which a predicate can be called and

still deliver a useful result. DEC-10 mode declarations need only demr'ibe a superset of the mc_es that

are actually called; ours must describe a (preferably improper) subset of the legM modes. An ille_al

mode will make a program inco_ecL For example, the delete/3 predicate avoids infinite rccursion if

its second or third argument is instantiated. This might be extnessM as

"- mode delete(?,?,+), delete(?,+,?).

in a mock DEC-10 notation. A c,'aditional mode declaration might be -anything from

"- mode delete(-,-,+).

to the superfluous

:- mode delew(?,?,?).

4.3..2*2. Description

Our system must be suitable both for declaring modes explicitly (for built-in and recursive predi-

cates) and inferring them automatically. Autonmted mode-infea'ence is desirable bezause legal modes

require verbose but accurate declarations. We do not want to burden the programmer with these.

To avoid confusion with DEC-10 modes, we change notation. "-" becomes u (uninstantiated),

"+" becomes i (instantiated), and "?" becomes a (any mode). In our full system, i will be reserved for

terms with no tminstantiated elements, and a will be both a "don't care" ('like "?") and a "don't k-now."

We introduce other mode items in later sections.

Each predicate has a set of modes in which it can be called. These are its legal input modes.

Each input mode has a corresponding ou:put mode, which is at least as instantiated as its input mode.

(Output modes a_ not necessa_' in tlm traditional sy_xn, but they are necessary., at least for internal

use, in mode inference.) For instance, dele:e/3 has (in our notation) the input/output pairs
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l(a,i,<:),(i,i.ii],l(u,u,i).:uj,i)],and/(i,o,i),(i,i,iH.

A Otrce-syna_×_t sya_rri i_ I;o: expressive, caough. Two probioms _u-i.,_: c,'>E,_:eJ v:zr_ah:e: and

_rcia!ly-in:t_:_ied 5,ra.clu: 6s.

Cou?led (or a_zasea ) variab!os t;ave different rim-ncs but bz_vc bccn unified toi_c_'rcr, Iosim', tNzir

distinctness; ins _tar:tiating one instantiates the otlK:r. Suppo_ that a goal co_p!e.s two vaiables, but the

coupling is overlooked. If one v_iablc !s instanfiatcd ca the time, the obhcz .0,ill wro<gly {x: thougN_

uninstantiatcd; if neittler is, any let.st instantiation of either will not be pa_-v.zi m the {*t._cr.

During rv_.rdcring, we update the inst:mtiatic'm.; of vadablcs m tkat we c=_qrt_wdcr goals safely.

Missing cot;pIi_,,gs will make inskantiated vadables atT_ar uninsmntiar.e>l, constraiz,,ing reordering but

not creating !!le_l calls. We assume t!mt the programmer is always fight, arid allow the original order

of calls even if some appetu- illegal. Thus the reordering is sotmd, if only, as a la._a retort, by not truing

a reordering at all. In practice, we do u 7 to dc.toct coupling and propagate ikS elTecls. We sb,ow two

variables couple.d by nmrking &eir positiona in the our4_ut mode with the san'_, symbol: c,, say, for the

ith coupled pair_

A lis_ or oSer recta-give structam may c.a_tain uninstantiatezl variables. If we ucat it _ fullv-

instantiated and then feed it to a pr0xlicate that demands an instantiatexl argument, the pr._,icate might.

ester a few r_.:;:::Sve calls, exlx_..,.e a variable and go into an infinite rec_:rsion.

Cansider _is common prcz_icate:

appendg [X/Y] Z,[X/W ] ) :- apper, d(Y,Z, W).
append([] )v).

If we call it in (i,a,u), it appends _e variab!e of the second argume_.m to the list in the first, yielding a

list who_ tail is the v-m-able: a ferm of a useful structure called a .2ifference list [15].

Now strp_ we _aive tlzis clause:

buila'LI ,!..2,L3 jA).'-

tran.f orm( L2,L.2 a ),
tran_c,'_:7:(LJ J.,3a),

a:,pe,'_,_L] J..2a r,L2b ),
apper.:2'L2b j.3a,l.,4 ).
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We call buiIdt4 in mode (i,i,i,u); tran_fornv7 work.s in rnode_ (i,a), and appends'3 in modes (i,a,a) and

(a,a,i). Now we try to rcx_rder the clause. If we say that append(i,u,u) re_urns (i,u.u) (the third argu-

ment has a variable in its tail), the following good order will be rejected:

build(L1J_.2 J_.3JA ):-

append(Ll l_2a.L2b ),

transform(L2 J.2a ),

append(L2 b I2 a £4),
tran.sfo rm( I_.3i.3 a ).

On the other hand, if we my that append(i,u,u) returns (i.u,i), the following illegal order will be gen-

er'ated:

build(L1J_.2 JA jA ):-

append(LI.L2a,L2b ),
append(L2b,L3aZA ).

transform(L2,L2a ),
transf orm(L3.L3 a ).

Clearly we must forego the first rather than risk the second, but can we do better?

Making the mode s3"stem more complex can make it more cxpre.ssive. We give it the flavor of a

typing system [12], adding notations for structures and lists that are incomplete (or not known to be

complete). Our solution is tentative at best; we hope to improve it_

A list known to be fully instantiated has mode i; otherwise, it has a mode item of the form

l( <element ]>,<element 2>,<element*> ..... <eleme._t n> ,<tail> ).

There is one mode item for each known element of the list and one for the tail. If the length of the list

is known exactly, each element of the body gets a single item. If not, any known leading or trailing

elements each get an item, and the other elements of the body are lumped together and given a single

mode, followed by an asterisk indicating zero or more items. The tail is i if the list has determinate

length, u othexwise; recall that because the list-constructor function "." has two arguments, the list

[a,b,c,d] is actually .(a,.(b,.(c,.(d,[])))). The empty list is the last element. Thus we might descn-be

one mode of apper.d/3 as [(l(a*j).u,u),(l(a*,i).u,l(a*,u))]: a list of determinate length but unknown

t)y, es of elements generates a similar list of indeterminate length.
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Functo_otherlhanlisle,unlc:-;skm>w;_'o t_efull?'insc'antiatcd,u..'-e tmate.d similarly, _ith m_×_c

items of _e formff<arg ]>,<.:,.rg 2>,- ' ). I! the m-ity of the functor is known, c"-ach <a_-g i> will L×"

a mode item: oeherv.,e_' we. C_c_l them ::Lswith lists. Thus we, " _,"_n_g,,t dc._acriN " one m(x3e, of _ built-in

D-_edicate =.. (or _c,¢iv ) [3], which convert, between k:rms and tis,-'.., the functor cg_rmST_O,'-,ding to the

of the IkL and Che argv_mcn!s to the LaJl, a.<, [_(a*)),(M,a*.i))]. A ,,erm of unkalown arity and c_m-

tents becomes{ a list of up.known size and con_ntq wiJl a constcnt htk_d and a detea-minate leng:h.

We have the following m(×te items:

u: uninstantiated argument

a: argument of uncertain insumtiation
i: instantia -te.'l argument

ci: member of the ith coup!'cd set

l: par'&tlly instantiated tist
j! partially inst:mtiamd term (not a list).

To these we add p, found only' in output modes: it preserves the mode of the argumet_t_ in ocher words,

the argument is unaltered by 12_epccxIicatc. This is ¢&c.eaLially shorthand. Ip,smntiaJed argtmaents are

not altered by predica:es; tk,eir pre.sc_ce [u ou.:put modes is as pIacc.holdoa's.

4D23. Usm

q-t_ese me,des a.ne i_ntendc.l primadiy for reorde._mg-systems, but oth_ applications am possible.

They might be useful for running Pro!og on multiprocessors: for instm_ce, goals that appe_ to defend

on predecessors might act ,really be able to run in parallel with thean. Other _ _l',e._have recognized

the usefulne_cs of mom-._cific mode declarations for D_rallel proce._ing [2].

4.4. blode inference

4.4.I. Previous work

Not much has _ published on automatic mode-infc.rc::ce. Mellish [11] had success with a

mode sys',em interm_iate in complexity _>,,ccn the DEC-10 system and ours. Tung and Moldovan

[16] pre4cnted a me.zhod for finding modes as part of their work on AND-parallelism. _"X.'bmy [5]

deveio_d a u_ful method, with accompan£ip, g uh_.-ory; Ny_.ause it is uh_."basis of ou_- method, we will
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presentit msomedetail.

4.42.Debray'smethod

Debrayusesthreemodes:c (closed: contains no variables; corresponds to "+" and our 0, f

(,5-ee: an uninsmnL_ated variable; corresq:xmds to "-" and u), and d (don't know: not definitely closed or

free; corresponds to "?" and a). He defines two orders over these modes: the instantiation ocder <__,,,

for which f<___d<___c (c is at least as instantiared as d, which is at least as instantmtcd as fl, mad the

_formation order <_q, for which d<i,qfand d._lc (d provides no more information than for c).

The idea behind Debray's method is simple. We have a program and a query to one of its predi-

cams in a given mode. We combine the query's mode with _ head of a clause; irdtially all of the

variables in the clause are f, but some become c or d. We now k,'now a calling mode for the predicate

of the first goal. We check a table whether we already know the corresponding output mode; If so, we

update the clause variables and go on to the next goal; L¢ not, we "call" the predicate of the goal to

infer the output mode, just as we did with the query, performing the process recursively and storing

results as they are derived. (Eventually, facts and built-in predicates provide modes at the bottom lev-

els.) The output mode for a given input mode is tak_ as the grea_ lower bound, with reo--pcct to </,¢

(C"_,,¢), of the output modes arising from the different clauses; in other words, an argument position is

d unless all clauses yield c or f for it. When the process ks finished, we take (-hW of the calling modes

as the mode for the predicate.

Dcbray speeds up the proc.e.ss by transforming the program into a mode interpreter, a program

that mimics the behavior of the real program in producing outp,at modes from input modes and pro-

pagating the results. Each original predicate maps to a table manager; a call to the predicate becomes

a call to its manager. On being called with a mode as one argument, the manager checks whether the

table contains an output mode for that calling mode. If so, it returns the mode. If not, it calls new

clauses based on the clauses of the original predicate. These clauses call other table managers (also

standing in for predicates) and, when necessary, predicates that propagate instantiations of variables.

The manager takcz C_ of the results as the output mode, stores it in its table, and returns it to the
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caller.Thuswecxocu_onlyL.t-iepart.,,oftheoriginalprogral:lthaiarel__rtine.nttofirldmgitmmodes,

zmd avoid duplicated c/fort. '-_c.'_t,_ the mode in'_:rprctc.r c,_.c_.:utc_';detemlmistical!y, and requires

simple unification.,;, it should execute in fro" Ies.'_time thar_ the original program.

4.423. Current work

We follow Dcbray in making a merle inte._rczcr of bhe program a.r_d using a ruble of resu1_ to

save effort. Our compticmed mc/-.le system rextuims more information, including :;cf_.uuie rczords for

input modes wi'& distinct output modes. We find sek_ of legal modc:;, not a single 1-)EC- 10-st),le mode,

and we consider built-in predicates.

We, begin with a progt_tm, ix)ssibl;, ' with e._plicit mcxlc-decba.ra'ions and directives not to tO'

inferring modes already declared. ALl built-in predicates have mode.,; declared. ¥¢e scan tl,.rogh the

program, minding the declarations and finding name, arity, and number of clauses for every user predi-

cam. We load all this into our table, impl_nentcd as a dictionary.

Now we can ge.nemte w,.uksfo_ned predicates corresponding to each u.,;z.r predic.atc, analogous to

Debray's table managers. We call them rc_tpredScates, a_c] the)' l(x_k like this:

<predicaze > (< ari ty> /D ic tionary) :-

lookup( < pr edicate > ,< ari_ > _I c,4eP air s,D ic iio n_vT ),
nonvarf M odeP airs),
f

<predzcate>( <arity>,ModeF'airs,Dictionary):-

<predicate>( <arity> ,O.ModePairsO,ExceptionsO,Dictionar?.'),
<predic ate > ( < arity> ,1 ,_ odeP airs l P_.xceptionM .Dictionary),

• " " i

<predicate > ( <arity> ,N _fodeP airs_V,ExceptiorLvV,Dic tionary'),
combine([ModePairsO,ModePasrsl,.., a_fodePairsN],

[Exce ptionsO,Exc eptions l , . . . ,Exc epti_ r, _N] )4 ode Pair s ),
lookup( < pr edi cate >, < arity> .M odeP air s,lg ic 6onao,).

(Replace woals in angle-brackets with appropriate constants.) lookup�4 gets the set of input/output

mode tx_irs _k'at has _en inferrred for the predicate; ff the.re L'_no _t, it calls the transfom_ed clamae__ of

the prcxlicate, each providing a set of n_cde pairs as from an original clause, co,'nbim:g3 combines uhe

results iato a single set oi" pairs, s_ore.l in the dictioaary (so that the predicate needs only two
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aguments);thelistsExceptions, tell if cuts or o'&er built-in predicates (such as varll ) will allow or

forbid cemain input modes. If all of the exception lists am empty, we disallow the input modes that do

not appear in the sets of all clauses. If an input mode generates more than one output mode, we take

the (--3,_ of the outputs. The.<,,_ for our mode system is

u<,,,,a<.%,ff <--i,,,i,

with t n'eated as fand p replaced by the corresponding input mode.

For the rest of the Wansformation, we scan through the program again, making of each clause

two predicates resembling these:

<predicate>( <arity>, <clause number> )dodePairs,Exceptions.Dictionary) :-

<goal O> (< arity O> ,Dictionary'),
<goal 1> (< arity 1> ,Dictionary),

p

<goal M>( <arity M>,Dictionary),
Exceptions = [ExceptionO.Exceptionl, . • - ],
se tof( (l r._I ode,O utM ode),

In.Mode "OutMode'<predicate>( <arity> ,<clause number> ,InMode,OutMode),ModePairs).

< predicoae > (< arity> ,<clause number> j rL_4ode,Oua_4 ode) :-

look.up_membcr( < goal O>,<ariry O>jnModeO,OutModeO,Dictionary),
up&ate( <state O>,<head O> JnModeO,OutModeO,<state 1>, <head 1>),

lookup member(<goal 1 >,<arity 1> jnModel,OuzModel,Dictionary),
update(< state 1>, <head 1 > jnModel ,OutM ode l, <state 2>, <head 2 >),

• . .

lookup memJoer( < goal M>, <arity M> JnModeM,OutModeM.Dictionary),
update( <state M>, < head M> JnModeM,OutModeM, <final state> JnMode),

extract( <final sta:e >,OutMode ).

First we call the root predicates of the goals, to ensure hat the necessary sets of mode pairs are

in the dictionary. _Ve also keep the inefficient setofl3 predicate out of deep recursions.) ff the same

predicate is called by several goals of the clause, only one root-predicate call need be retained. We

also build a list of exceptions contained in the clau..v: (cuts and so forth) that might affect combiuation

of clause results, setof/3 then calls the second predicate repeatedly to find the set of mode pairs for this

clause.
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"IT'lesecondpredicalzcomputesa singleinputm(×le/ output mcz_e pair f(_ the original claus, e,.

During cxczution, it rnamt_ins two tuple._, of variable& One rct_res_v..'; the demands m:_3e oa the he-ad

of the ofigiaal clause., and the other represents t;_c s*aIe of all the original variables, loc,._up_r_k<_,=bc_

return:, one of the legal mode pairs for a goal. update looks at the demands of the input mode. It

checks whed_cr the clau_ vark_blc.s can satisfy them; if tEey cannot, it tri_ to ._¢atisfy the de.rn:mds by'

IX.Vssing them on to the herod tuple. If the he_..adtuple can satisfy them, u,,_,'e t,ixk_tes _e head 9aplc

with the demands, and the clau_ vark_bles with the output n_,t_.{c; if it <mnnot, UD_ia:e fail.s, and we

backtrack to lookup_me,_er for another mode pair. "When '&e second pn::.dicate succe-eds, each of its

goals has t×-zn ass.igne.d a Icg_ mode, the dornands made by t}_e gcrats are sati_f, ed by the head (creat-

ing a lega! input movie), and the insmntiations made by the goal,s have tx-cn recordezI (and tran._fommd

b?' ex:rac* into an ou_ut mode): it has found a mc_ pair tlmt Ls legal f\_r the original predicate.

5. Markov-chain method for reorderin{l

We want to find flJe exI'g'x:ted cost and success probability for a prcdic.ate c_'_ll'cd in a legal mo..Ie,

given that we know the cost and probability for the predicates call_ by' its ckm.,;es. We use :-m idea

introduced in "he paper by Li and Wah [I0]: mcx:lding execution of a Pmlog c!a=se ;_ an absorbing

Markov chain [81. The cost and probability of the clamvz follow directly from prog, erLic_ of its chain;

combining results for clause.s gives us vNu_ for the ra ".xlicate.

5.1. Pure Prolog

First we describe the method assuming a subset of pure t_olog; v/z., no recursions, and orfly

variable arguments to a clau._ tmless the clause ks a fact. We extea_d it to full pure Pmlog, leaving

real-life Prolog for a later subsection.

5.1.1, Oven'iew

ConMdex the clause

k:-a,b,c,d.

(_, c omit _iablcs for brevity.) Suppose that we know the success f,_obability p; and the extv_wd
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costci for each predicate i. To find the cxI_cted probability and cost of finding a single solution to the

clause, we model it as the M.arkov chain of Figure 5.1. Each goal receives a state; the arcs are labeled

with success and failure probabilities. The two additional absorbing states S and F represent s_cce..,_

and failure. (In order for the clause to be selected, the head must already have unified, so that a

separate state k, unification probability Pk, and arcs to b and F are unnecessary.)

The state transitions of the chain mimic Prolog execution. We start in the state labeled with the

first goal b, proceeding to state c if b succeeds, or ending up in state F if it does noL In every goal

state i we either move forward with probability Pi, or backtrack with probability 1-pi. Evenma/ly the

process stops in an absorbing state: success or failure.

Note that if we want the cost of fi_ling all solutions to a conjunction of goals, as in a bagof, a

setof, or a failure-driven loop, we add an arc of probability 1 from S back to tim last goal, as in Figure

5.2. Whenever we find a solution, then, we baclca-ack, looking for another, until we fail.

p(a) p(b) p<c) p(d)

a

l

<5
Figure 5.1: A clause body as a Markov chain.

p(a) p(b) p(c) o(d)

1-

(
Figure 5.2: Markov chain for all solutions to a clause.
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5.1.2.Derivingprobabilityaxdco:_iforaoh,use

Wetakethesuco.-ssl}robabilityPea,,,**of the cb, u;- as the t.x'otwbilky thou fix_ _,_kov pP.x'eas

will _ absorI_d in state S. \Ve take _ c,v i as the e.xt_cctal cost of a solution, wtme. c, is the

expected cost of ge;d i and v: is the m.cmrt num.bc.r of vi._i_ by tile pr_vem to _ate i. "Ihcmfore we nezd

to calculate P_a_, and the v,: tcxtbook [8] mathematics.

We begin wkh the transition matrix P. An clement p,j ccmmins the probability' of a trm_sitkm

from state i to state j; 5 gets index 1 and F gets index 2. The chain has r states, s of which are tram

sicnt We consider four submatdces of I}_er.a" matrix P:

'=Fi
I,._,, the identity ma:rix, giv,_s tram_itJors betweea a_.,t_bing states; R, sx(r-s), giv_ transific_s into

absorbiI_g sta'c,_; Q, s:_, gives transi6o,.'Ls between transient states; and the 7_o matrix, (r-s)x_, shows

that nething l_vcs an al_c_Sing stme. tlerc is P for our example:

1 0

0 ]

0 1-p_

P_= 0 0

0 0

pa 0

0 0 0 6

0 0 0 0

0 p,= 0 0

1-pt, 0 Pb 0

0 ! -p_ 0 p_

0 0 l-p,_ 0

The matrix N= (1 -O) -_ pmvide.s our ans-wers. The first row of N contains the numbers of

,,isits vi for the t:ansient states, be.caum, we s ,ta.rt in the fu-st state. Tim product NR gives the success

txobabili_y p_a_,: it is the first clement of tim column of _ate S (column 1), so that we rmed oaly take

tim dot product of that column ofR mqd fl'm fust row of N. For our example,

Qi. =

0 p,, 0 q]

1-pb 0 Pb

0 l-p, 0 "

0 0 l-p,t

and
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and

,V,=de t (l -Q)

pcp,:-(1-pb )(1-p¢) p.[1-p,(1-p.,) ]

O-p_)[pAI-p#-I] 1-pAl-p,O

1-pb(1-p,) p¢-I

(1-pb)(1-p.}(1-pa) (1-p,)(1-pd)

P,g_b P,d)bP¢ ]

Pb PbP¢ [

l-p.(1-pb) p¢[l-p.(1--pb)] ['

(l--p,)[p° (1-/_,)-- 1] pbp¢+(1-pbXl-p._

det (I---Q) =
(1--pb )[ (1-'p.)(1--p.)--p,,pcpd] '

P ,P bP d7 ,_
Pk = NkRk[1,1] =

(1-pb)[(1-p.)(l--p,)--p_pCpa]

In practice we will do everything numerically; if we have N goals, this requires inversion of an Nx.N

matrix, .ZPq extra multiplications for finding the probability and cost, and sundry additions. If our

reorderer is written in Protog, it is best to call a routine _,vitten in an algorithmic language, such as C,

to generate the matrix, invert it, and return the results. (C-Prolog [13] does not have a built-in inter-

face to C, but many commercial Prologs do.)

5.1.3. Applying the results

We can use the Markov-chain method to find, for each calling mode, the least expensive reor-

dered version of a predicate. Different modes may require different orders, and the cost of a goal will

vary with its mode. For the subset of pure Prolog we have assumed for now, we can reorder the goals

as we please, computing the cost for _h permutation and choosing the cheapest. An N-goal clause

has N ! permutations; for N>4 we can save effort by culling some of these as useless (e.g., an expen-

sive goal with a high probability of success should not be first). With probability and cost values

found for each clause, we combine the probabilities to find the conditional probabilities for the clauses

in order, multiply these by the costs, and obtain the expected probability and cost for the entire predi-

care.

5.1.4. Initial probabilities and costs

We derive the cost and probability of a clau__ from those of its goals; in our subset of Prolog,

thi_ information must be based on costs and probabilities of facts. We allow facts to have non-variable

argument.s, so that their heads are prone to failure.
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Evaluatingafac:cossson_zcall:the.,;uc_c.,_,;p_obabilit>ofafactisp.roblcmaticalunlc.'vstI_c.:all

is uninstantia:c'& when it i:; unity. We can, iike Warren [18], find domab:x fo_ each argument; a

domain might Lc _hc ."_. uf cunsL?_ta> in that p<;si_i_m of the Dexlica'-c, c_"pc.ri_aps 9_e set of all co:,;Ian'..>

in the program. 0,Ve have fcxmd the inner satigf,_to_)' for our fami!y tree prc,'gmms). "g,'m prt_habili U

Ls taken as 1, divided by' ldomain, I for e.,,'cO, po.,fition i _hat contahm a constant in both f._'a':land call

Suplx)Se we allew %1i pure Prolog. wiLh recursion, and v`'ith constanks and data str,,.,cturcs

allowed in any' predicate. Nov,' it is hard to &'*:rmine the prot_ability that a call will unify' with a

clause h_qd: if any [,'air of coff_-t'>0nding srgume.,_ts has both mem_rs non-variable, _e probability

will no longer be 1. For consmnm, we can use d_nains, as with L_,s; for su-uctures, the predicates ar_:

tksually recursive, with a s_-.ial case that matches efnpty shqacture_,. Thc size ef a st_-acture will aff_t

both the chance that the empty ca.sc will match, and tile cost of a call. Bex:ause size is usually'

unknown tmfore run-time, we need ;m estimate, supplied either by the sy.'-;tem or the user. For some

predicates, the user may lmvc: to provide explicit unifi_tion probabilities for each argument of each

clause head.

S.2. Restricted (realoworld)

5.2.1. Restrictions

The restrictions we discuxs_,ed in eerlie, scw._ions limit -he numbec of posxible rcx)rderings. Many

attractive orders arc thus forbidden, i-:_t,tthe numlx:r of pennum'..ions tl-tat we have to c.xandrm for each

clause _dy is s,harply reduced.

FRed goals cannot be moved, but goals on eith_ side cf one are not r_tricted. For e_.ample, if

the third goal of a five-goal clause is tSxed, the numtw.r of permutations pl,.mmmts from 5]=120 to

2!2!=4. A cut gives rise to a b "l.m-kovchain like that of Figure 5.3: the goal after the cut does not back-

track to it, but fails; of course, the cut also res_-icts gt,al movement like a fixed goal. A disjunction

generates a split cIxain, as in Figure 5.4; reordering is under the resu-ictions givem earlier. An/f-rhen-

e;.;e impIication g_lerates a chain that combin_ fcatums of the two previous chains (Figure 5.5); this

emphac&:es t!:at the in_'2Licat.ion is ,',:s.,_ntiaily a cut with eff.>zts loc_ to ik'_claus.
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1

°.°

Figure 5.3: A clause with a cut.

I

Figure 5.4: A disjur_tive clause.

• ° •

Figure 5.5: An if-then-else implication

Every goal must make a legal call to its predicate. A reordering that prevents this, not providing

the goal with an irL_tanti_dion it needs, is rejected. We can generate a potential order for a clause in a

particular mode, goal by goal, keeping track of which variables a goal demancls and which it instan-

tiates. As soon as an illegal mode arises, we backtrack to generate another order, so tha, only legal
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orders_c tcqk'dforthelo,a,,,_stcost."_1cprx>,F.essis ccmini._'c¢_[ of our mc_.lc-irffcrc.ncc te,c:hniquc.

5.2.2. Imph:.rmmta:ion

5.2.2.1. Ncct_sii.ies

Reordering goals rcqfiire:_ a great de,_l of info_maticm about a pu_ram, provided by the pro-

grammer or, preferably, infe.rred automatically. This includes:

Legal mode.s for c_'_ch bui!¢-in or usc_ prex!icam, do.qarcxl or inferred
Unifica:i._ pmbabiliti<s fc_r certain ckm.se he::_ in certain mczlcs

Probabi!ifiea and costs for _Nailt-in p.rcxlicat_s

A list of en W I;oints
A list of the fixed prcdicatc.s
A list of the recursivc pv:dicates
Probabilities and costs for recursive predicate._.

q3q_e are in F,c source rite _ dectea-a,ions, in files ge.nsmted by, infeJencc programs, or in a file

0tand-wriuen for a particular Prolog implementation) conr.aining inI,ormc.don abo, ut the built-in pr'cdi-

cares. They wilt Ix: in the fo, m of facts. In most ca_q we can read tbcan into the clauv: since of a

Pro!og intcxprcWx, or compile them and load their object ccde; however, probabilities and costs for

predicates me p.n-haps best lo,qded into a dictioma U, where "hey will b,.; joined by others b<Lqg infc.rpc.d

for the transfonned ia\_gram. Ix: this way, all :;uch inf_matkm c._ be accc&_,d mdformly wifl_out

asserting new Yac's, which is clumsy and costly.

5.2.2.2. Execution

The reordering program beghqs by l_ading the facts ::_M the program to Ix: transformed. Starting

at an entq/lyoink it travers_ the vrog_am depth-fi_t until it reaches a clause whose_ goals all have pro-

bability and cost vNues in the diction,'_'. It checks for control predicates, and kooks for further infor-

mation about the goals, such as leg_ modcs and mobility. Choosing me of the predicate's legal

mode.s, it begins to g,merate permutations, dk,;_rding tl_ C':at br "wak the rules. W'hen a Izg_l F,:.rmu-

ration is geeerat_, the rcx)rdc-er calls a routine written gn C, giving it the probabilities and (I: _ S kS in

o;der, and whether or not a s-W.cinl mmsit%n matrix must be generated. The routine returns the

expect_cl probability ?rod cost for the ,,-.crmutation. "Pne re,'_dercr generates o_r pca'muta'.ions and
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choosestheleastcostly.It printsthealteredclauseunderanewnameandstores the probability and

cost in the dictionary. It repeats this for the other legal modes.

The reorderer repeats this for the other clauses of the predicate; when a predicate is complete, it

combines the stored probability and cost values, along with any necessary estimates of unification pro-

bability, to obtain the probability and cost for the predicate, which it stores. Working upwards, the

reorderer repeats the process for every user predicate in the program, changing goal names to

correspond to the new predicate names.

5.22.3. Example of a transformation

We have several predicates from the family tree program:

graruffather(X,Y) :- parent(X,Z), father(Z,Y).

par ent(X,Y ) :- rnother(X,Y).

parent(X,Y):- father(X,Y).

father(X,Y):- rnother(X,Z), wOre(Y,Z).

( motherl2 and w_fe/2 are collections of facts. We want a better-ordered grandfather�2 for mode (u,u).

Suppr)se that reversing the goal orders of father mad grandfather is helpful in this mode, according to

the reorderer. (The clauses of parent/2 have one goal each: no room for improvement_ ) The re.orderer

might generate this:

grandfather_uu.(-X,Y) :-father_uu(Z,Y), parent(X,Z).

father_uu(X,Y) :- wife(Y,Z), mother(X,Z).

If we want to call the new grandfatherf2 as a query, we might add

grandf ath_r(X,Y) :- var(X ), vat(Y), .t, grandfather..uu(X,Y).

and similar clauses appropriate to the other modes.

6. Performance

Results so far have been promising. We have found that if restrictions on reordering are not too

great, fairly large speedups are possible. Also, fixed predicates do not seem to have as great an effect



hadc ._.._ , •_:.n c_J, dt_pitc ';u_ir ,,,,_'_,_'o_ propa_ativ._, ,. inu nobi!i'v to [hc;s ancc_tors.\VC

0.I.R_ordered pr'Glran-;:;

"/able 0.1 shows _,me vc.svlu; of P_x'.,rdc:ing a f_up.ily-L,-cc progr:En v,rittc_ iu nca_q)' t:me P;uleg.

Table 6.1 : Rcsulkq of reordering a fmnily tree program.

F'r ic ',e IVtodc Number of calls
I ed _a-" j ' " ori_n.al___J___ark_?v_j_...gptim__aj..j

! (u,i) 61872 1409

(i,u)
(i,i)

brother (u,u)
(u.i)
(i,u)
fi,__

cousins (u,u)

(u_)
(i,u)

daughter (u,u)
(u,i)
(i,u)
(i.i)

grandmothcr

granck,;on

mc, t.h_ in law

rlC_iew

siblings

sister

(u,u)
(u.i)
(i.u)
(i.il
(u,u) [
(u,i) l
(i,u) 1
(i_±__.l

(tl,U)
(u,i)
(iaa)

(u,u)
(u.i)
(i,u)

(u,u)
(_)
(i,u)
u.iL_
(u,u)

(u.i)
(i,_)
(L'3

2035

93354

792

4555

1004
16003

62987
106_¢96

63570
1380_

382

700
4251

2149._.3

23O

11254
548

284?6

709

1080
2,4950
4496 _,

98
4338

3_53
18648

103,"9
102122

10750
122I%

416
4126

575
12712

4486

935
15934

I

203567238 ,
r

792 792

539 530

100-4 lC_34 i
21-1-49 1&003

i477
2O_34
2°,203

151(162

_9 229

494 494
670 670

19803 19_03

2(_ 200

367 367
_8 548

18705 18705

073 663
699 6-.°0

10M 10_%4

a2596 36156

98 98

314 314
363 363

1(.,055 16055

1400

1523
2592

81072

,_16 416

575 575
575 575

18158 12712

3_3 275

648 540
935 935

21380 159M
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There are 55 constants in the program, representing tx:ople; we called each predicate in each mode,

with one call for each tmssible assignment of constants to instantiated tmsitions. Therefore, a test of

mode (u,u) required one call, modes (u2) and (i,u) required 55 apiece, and modesfid) required 3025.

All re.arlts were generated by an instrumented version of C-Pmlog 1.5 [13] running on a.Sun-3/50M

workstation. We give figures for the original program, the reordered version, and for the least-

expensive reordering as determined by exhaustive enumeration (when combinatorial explosion dld not

forbid).

Here are the pertinent predicates of the original program. Not shown are the ten facts for girl/1,

nineteen for wifel2, and 34 for motherl2.

female(x):- girlCX).
female(X):- wife(_,X).

male(X):-not(female(X)).

husband(X,Y):-wife(-Y,X-).

father(X,Y):-mother(X,Z),wife(Y,Z).

parent(X,Y'):-mother(X,Y).
parent(X,Y):-fatber(X,Y).

married(x,Y'):-wifefX,'O.
marriedfx,Y):-wifeOC.x'3.

daugh ter(X,Y'):-paren t(Y,X),female(Y).

siblings(X,Y):-mother(X,Z),mother(Y,Z),unequal(X,Y).

unequal(X,Y):- X_Y.

sister(X,Y):-s_lings (X,Y),female(Y).

brother(X,Y):-siblings(X,Y),male(Y).

grand parent(X,Y):-parent(X,Z),parent(Z,Y).

grandmotherfX,Y):-parent(X,Z),motherfZ, Y).

gran dson(X,Y'):-gran d paten t(Y,X') an ale(Y).

aunt(X,Y'):-parent(X,Z),sister(Z,Y).
aunt (X,Y-) :-paren t(X,Z),bmther(Z,W),wife(W,Y).

nephew(X,Y):-sibli n gs(X,Z),son (Z,Y).
nephewCX,Y):-sibl ings(X ,W),married (W,Z),son (Z,53.
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cousin:_(:g,Y):-[_lrcm(NZ) parcnt(YW),>:iblings(_N,Z).
cou.qiris(X,Y):-plirc:l_(X,Z),pa_nt(Y,W),sib[ip.gs(W,V),marrie,!(VJ,).

nioLher __in law(X, Y):-rn:_m_ k.'v:(X ,Z),mothe,.(Z,Y).

The gai_ns are m,>,vI irp.i-)re,_give for the h:flf-ingt_mtia__c,d mode.s. Apparen@, ,'!-,.'.i_'o.,tial i:-<-:_:_ntia-

tion is e_ploited by a go<×J _,.(_,t c_-der, s,o that l.:Fge .search l.recs are prmmd e.a.rlv. This d{xxs not hap-

pen so re_dil', for mode Ca,u): ;_he first goal must be tailed uninstzm_ited, and ir all goals of a ctau._.

ase cxt.ensi_c, reordering is not a_ useful. Similarly, for mode (i,i), cx_ough variables :_so instantiatcxl

that goal order is not crucial; .v)mc.time.s the reordered clatk, x?.s m',2 more expensive in tb.k; mode.

6.2. Effects of impure features

Here is an example of how impure features of Prolog need not constrain reordering. Fixed

predicates, a_ we have s,._n, lave a far-re.aching effect on reord_ing [_c.ause they propagate their

kc_havior to their ancestors. Ax,alysing some large Prolog programs, We count the numb,._r of fixed

predicates and compare it io the mtM numbea" of predicates to see how maaqy wit! l>c cons_ainezl during

reordering due to immobile go._aIs.

Table 6.2 shows results fo.r a deckers-pLaying program az_ saome kaiowle.dg<>based systems,

designed for faculty registration, writ_.en by smderits as co,grse F.rojects. Progl:_n sb,.e rmqged from

about 40K to 350K bytes. Even though these progra_rm am hca,'ily intoracI_ve and u..<,eaxser; freely,

the;,' still have a fair nmn_r of mobile prextic.ate-s.

7. Conclusions

In this paper we have pr,_,ente.d a meshod for reordering Prolog for morn efficient execution.

We have showll wh:tt information is neceavary to t:eep a reordering corrc, zt., .how much of this can b-c

inferred auu?matic.dly a; pre.<;e.m (with dcscripti0_Ls of the autonml_ic inference med_,ds), and how

much mr,st still 't:_epfovided b;,' the pr_grammer. We trove introduced a new system of t->it,log mcx:les

which may _.so '_,."useful for multipn>ces'_:or work. We have extended the Mmkov-c}_ain reordering

method to cover full Prolog, a:_d presc:_ LeA.some pre',imina:y re._urts of our work.
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Table6.2:Prevalenceof fixedg_gsinexampleprograms

Name

checkers

uva04

uval2
uval6

uva20
vu08
vul4

vul7
vu19

vu20

145
173

75
87

273
133

154
141

139
333

34
80

99
64

148
95

93
87
96

178

Much work remains to be done. We need to see whether the mode system is sufficiently expres-

sive, and improve it if necessary. We must improve our techniques for recursive predicates; the syS-

tem should be able to derive or estimate modes, probabilities, and cost.s, relying upon the programmer

only as a last resort. If analytical methods do not suffice, it may be necessary, to implement an expert

system to provide information for certain predicates. We must see whether not, bagof, and setofreally

need to be immobile; it seems that we only need satisfy any demands made by their enclosed goals,

combining modes to form a single mode for the entire goal. We can also exploit for reordering other

properties that can be inferred for Prolog predicates, such as functionality [6]. Finally, we should

integrateour techniques into one system, so that we can provide a program as input and, with slight

intervention by the user, receive a reordered, improved program as output.
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ABSTRACT

Resource sh,'uing on CSMA/CD networks can bc accomplished by using window-control algorithms for bus

contention. The window-control algorithms ,are designed to grant D.:rmission to transmit to the station with the

minimum contention parameter. Proper ow-,ration of the window-control algorithm requires that all stations sense

the same state of the network in each contention slot.

Noise causes the state of the network to appear as a collision. False collisions ctm cause the window-control

algorithm to terminate without isolating any stations. This thesis develops a two-phase window-control protocol

and approximate recurrence equation with noise, as a parameter to improve the performance of the window-control

algorithms in the presence of noise. The results are compar'cd through simulation, with the approximate recurrence

equation yielding the best overall performance.

Noise is even a bigger problem when it is not detected by aIl stations. In such cases it is possible for the win-

dow boundaries of the contending stations to become out of phase. Consequently, it is possible to isolate a station

other than the one with the minimum contention parameter. To gu_u-antee proper isolation of the minimum, a broad-

cast phase must be added after the termination of the algorithm. This thesis discusses the protocol required to

correct the window-control algorithm when noise is not detected by all stations.
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1.INTRODUCTION

1.1.ResourceSharingIssues

Physicallimitationsin thesizeandspeedofcurrentsemiconductortechnologies,combinedwiththeavailabil-

ity of inexpensiveprocessorsandinterconnectionnetworks,havespurredgreatinterestindistributedcomputing.

Oneproblemof distributedcomputingis togetthemaximumthroughputinthesystem.Chu,Hollowayetal.show

thata saturation effect occurs as more processors are added to a system [ 1]. In other words, the throughput of a sys-

tem increases as more processors are added, but decreases after a certain point due to interprocessor communication

overheads. Experience shows that a system's computing power normally increases by only a factor of 0.8 for each

additional processor [2].

Although there are several essential issues involving multiprocessor systems [3], one critical consideration is

a good resource sharing strategy. Such a resource sharing strategy should decompose work among the processors,

in order that the maximum throughput of the system can be realized. There are two major issues to consider in

regard to resource sharing: the job scheduling strategy and the type of interconnection network among the resources.

1.1.1. Scheduling Strategies

There are many different ways to categorize the various scheduling techniques. Probably the major distinc-

tions are between static and dynamic techniques [4, 5]. Static techniques make scheduling decisions based on fixed

probabilities and queueing theory models [6]. Consequently, they are also known as probabilistic techniques. Static

scheduling has the advantages of simplicity and low interprocessor communication overheads, but has a disadvan-

tage in that it cannot account for changes in the workload distributions of the system. Ni and Hwang [6], and Chow

and Kohler [4] have discussed various static scheduling strategies.

Dynamic techniques make scheduling decisions based on the current state of the system. Consequently, they

are also often called deterministic techniques. Since dynamic scheduling techniques can account for changes in the

workload distributions, they can potentially perform better than static techniques. However, they also introduce

additional communication overheads to obtain the resource status. Chow and Kohler [4], Lo and Liu [7], Wah and

Hicks [._], and Juang and Wah [9] have discussed various dynamic scheduling strategies.



Schedulingstrategiescanalsobecentralizedor distributed.In centralizedscheduling,oneprocessoris

responsibleforschedulingallresources.It mustreceivestatusinformationfromeachprocessor,processthatinfor-

mationaccordingtoaschedulingstrategy,andsendmessagestoprocessorstoreschedulethetasks.Consequently,

a lotof trafficflowsin andoutof thecentralscheduler,causingit tobecomeabottleneckof thesystem.Further-

more,thesystemisnotfault-tolerant,becausetheschedulerisacriticalcomponentof thesystem.Thesedrawbacks

tendto favordistributingtheschedulingintelligencetunongall theprocessors.Theproblemswithdistributed

schedulingstrategiesarethattheyaremoredifficulttoimplementandrequireadditionaloverheadsforall proces-

sorstomaintainthecurrentstatusontheotherprocessors.Nevertheless,therobustnessof distributedscheduling

strategiescombinedwiththeirbetterperformance,makesdistributedschedulingthepreferredchoiceinmanymul-

tiprocessorapplications[8,9,I0,1I].

1.1.2.Interconnection Networks

The characteristics of the interconnection network among the resources are important factors in determining

the load sharing strategy. There are basically three types of interconnection networks: shared bus, crossbar switch,

and multistage dynamic blocking networks. The following examples assume homogeneous resources and proces-

sors.

The most basic and least expensive interconnection network involves a single shared bus that connects p pro-

cessors to r resources (Figure 1.1). Each of the p processors must compete for using the bus before it can send a job

to one of the r resources. There are two common methods of resolving bus contentions: token passing and carrier

sense multiple access with collision detection, (CSMA/CD) [12]. This thesis focuses on the design of resource shar-

ing strategies on CSMA/CD networks. Wah and Juang have studied resource scheduling issues on CSMA/CD net-

works for both single shared busses [13] and multiple shared busses [14].

The crossbar switch (Figure 1.2) is at the other end of the spectrum from the single shared bus. It is an expen-

sive network in that connections must be possible from all p processors to all r resources. Such a network involves

p.r switching elements for p processors and r resources. The crossbar switch is non-blocking, that is, connections

from Pi to Pj do not inhibit connections from other processors to free resources. Therefore, crossbar networks do

not impose any limitations on the resource scheduling algorithms. However, they are often used in small systems
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Figure 1.1. Single Shared Bus
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Figure 1.2. Crossbar Switch



duetotheirhighcostofimplementation.

Multistagedynamicnetworksofferatrade-offbetweencostandflexibility.They are constructed from a

series of stages with switch boxes in each stage. The Omega network (Figure 1.3) is an example in this class. Each

switch box can perform either a straight or exchange connection. Note that this network is less expensive than a

crossbar switch in that there are only O(n*log2n ) switch boxes to connect n processors to n resources. However,

multistage networks are often blocking. Consider the scenario in Figure 1.3. The bold lines represent connections

that have already been established. Suppose R 3 is busy and P0 has a job ready. P0 will be blocked from accessing

the only free resource, R1, due to the connection from P2 to R o.

Owing to the blocking effects in multistage networks, the design of the resource scheduling strategies is often

more difficult. Wah has presented a distributed "algorithm for multistage dynamic networks [8]. The algorithm con-

sists of two phases: a resource phase and a request phase. In the resource phase, information concerning the number

of free resources is passed from the resource side to the processor side. Then, in the request phase, the network pro-

pagates requests from the processors to the resources; each switch box makes an independent routing decision based

on the results of the resource phase. If a request is blocked, it must be sent back to the exchange box in the previous

stage for rerouting. Conflicts in a box due to two signals arriving simultaneously are resolved by a priority scheme.

This algorithm is distributed in that exchange boxes operate independently rather than under a centralized control; it

eo

Pl

P2

P3

go

R1

R2

R3

Figure 1.3. A 4-by-4 Omega Network



isdeterministicin thatrequest._arerouteddynamically.

1.2.ObjectiveofThesis

This thesis focuses on the study of resource sharing strategies on CSMA/CD networks in the presence of

noise. More specifically, it concentrates on window-control methods for bus contention on a particular CSMA/CD

network, the Ethemet. The objective of this thesis is to develop a robust window-control algorithm for resource

sharing on CSMA/CD networks in the presence of noise.

1.3. Organization

There are four chapters following the introduction. Chapter 2 provides background information on

CSMA/CD networks and the various window-control algorithms that can be used to resolve bus contention for load

balancing applications.

Chapter 3 deals with the problems of noise in relation to the window-control algorithms. It outlines the vari-

ous types of noise and discusses how noise can affect the operation of a CSMA/CD network. The effects are

divided into two classes, one in which the window boundaries of all stations remain synchronous, and the other in

which the window boundaries of the stations may become asynchronized.

Chapter 4 contains the effects of noise on both the exponential backoff method and the window-control

methods. It compares the effects of noise with regard to various numbers of stations, various probabilities of noise,

and various window-control methods. This chapter deals with simulations for both synchronized and asynchronized

window boundaries. Finally, this chapter outlines the implementation of a window-control algorithm in a real sys-

tem in which noise is a factor.

Chapter 5 contains a summary of results and future research directions.



2. BACKGROUND

This chapter surveys previous work on CSMA/CD networks and window-control algorithms for resolving bus

contention. The first section describes the operation of CSMA/CD networks and Ethemet's binary exponential

backoff method for resolving bus contentions. The second section discusses the various window-control algorithms

and the technique used to estimate the channel load.

2.1. CSMA/CD Networks

Carrier sense multiple access with collision detection, CSMA/CD was developed and patented by Xerox as

part of its Ethernet local network [15]. The concept of CSMA/CD is fairly simple. Any station wishing to use the

bus senses it to determine whether it is busy or idle. If the bus is idle, it may attempt to transmit; otherwise, it must

wait until the bus is no longer busy. When two stations both detect that the bus is idle and simultaneously attempt to

transmit, their transmitted signals will collide with each other. A collision detection mechanism is necessary to

detect this event and abort the transmissions. In the worst case, assuming a signal propagation delay of x from one

end of the network to another, a station at one end of the network may attempt to transmit at time t and another sta-

tion at the other end of the network at a time slightly less than t+z..The two transmissions will then collide, and the

second station will detect the collision almost immediately. However, the first station will not detect the collision

until z units after the second station has transmitted. The total time from initial transmission to collision detection in

the worst case is, therefore, 2z. This amount of time is called a contention slot, and is the amount of time a station

must listen to the bus after transmitting to guarantee that no collision will occur.

The fact that there are collisions leads to the issue of determining the time a station should wait before it

retransmits. There are several solutions to this problem. The first is to transmit as soon as the station detects that

the network is idle. This is known as persistent CSMA/CD [12]. However, under heavy traffic, this method works

very poorly because stations constantly collide in their attempt to access the bus. Consequently, a nonpersistent

protocol [12] may be used in which the stations always wait a random amount of time before retransmitting. This

method does not work as well under light traffic. One compromise is to use a p-persistent protocol [12] in which the

stations transmit immediately upon sensing the network idle with probability p and wait a random amount of time



beforerctr,'msmittingotherwise.

Ethemetusesthetruncated binary exponential backoff algorithm to determine when a station can retransmit

after detecting a collision [16]. According to the data link layer of the Ethernet specifications, a station has 16

attempts to transmit on the bus [16]. If it is unsuccessful, it waits an integral number of contention slots before

retransmitting. The average delay before retransmission grows exponentially until n=10, but up to 15 retransmis-

sions may be attempted. The number of slot times to delay before the n'h retransmission attempt is chosen as a uni-

formly distributed random integer, I, in the range 0<_/<2 k, where k=min(n,10). If all 16 attempts fail, the station

quits transmitting and logs the event as an error.

The binary exponential backoff method has an advantage over the persistent methods for bus contention in

that it can more effectively account for the system load [15]. However, its performance degrades as the number of

stations increases. Furthermore, it is not possible to establish priority of one station over the others with regard to

the use of the bus. Hence, it is not easy to implement a load balancing strategy in which the priority to transmit is

based on the system workload. Both of these problems can be resolved by the window-control algorithm to be out-

lined in the next section.

2.2. Window-Control Algorithm

The purpose of the window-control algorithm is to identify the extremum from a set of physically dispersed

random numbers called contention parameters [13]. The distribution of these numbers varies according to the load

balancing scheme used. For example, the length of the job queue or a random number from a uniform distribution

can be used as the contention parameter. Since procedures for isolating the minimum and maximum contention

parameter are similar, this thesis discusses only procedures for isolating the minimum. Bus contention is resolved

by granting permission to transmit to the station with the minimum contention parameter.

2.2.1. General Operation

B. W. Wah and J. Y. Juang have presented a window-control algorithm for determining priority on

CSMA/CD networks [13]. It is a distributed algorithm in which each station maintains a window to decide whether

it will retransmit in the future. All stations update their windows synchronously, each contention slot, according to



thestateof thenetwork.

Thealgorithmassumesthatallcontentionparametersliein theinterval(L,U]. Theinitialwindowischosen

witha lowerbound,a, at L, an upper bound, b, at U, and a temporary upper bound, w, in (a,b]. The value of w is

chosen according to the window-control protocol being used, and varies as a function of a and b. In each contention

slot, all stations with contention parameters smaller than w transmit. If there is a collision, there must be at least two

stations in the window, (a,w]; therefore, b is lowered to w in the next contention slot. If the skate of the network is

idle, the window must be empty; therefore, a is raised to w in the next contention slot. Otherwise, if there is a suc-

cessful transmission, the algorithm terminates. This process is repeated until the minimum contention parameter has

been isolated. The operation of the window-control algorithm for an individual station is outlined in Figure 2.1.

Operation of the window-control algorithm is best illustrated by an example (Figure 2.2). Initially, each of

the five stations generates a random contention parameter in the interval CL,U], and sets its window to (L,w 1]- Dur-

ing the first contention slot, stations 1, 2 and 4 transmit. Collision is detected, and the window is reduced to (L,w2].

In the second contention slot no stations transmit. Therefore, the lower bound of the window is increased to w z and

the upper bound of the window to w3, resulting in a window (Wz,W3]. Finally, in the third contention slot only sta-

tion 2 remains-- the transmission is successful and the algorithm terminates.

Wah and Juang discuss the performance of several window-control algorithms in which the channel load ,and

the distribution functions from which the contention parameters are generated are exactly known: bin,'u'y-divide,

dynamic programming, greedy window-control, and approximations to greedy window-control [13, 17]. These are

outlined in the next sections and evaluated with respect to the presence of noise in the next chapter. In the following

discussion, a is the current lower bound, b is the current upper bound, w is the upper bound of the next window, and

n is the number of contending stations at the start of the algorithm.

2.2.2. Binary-Divide Window-Control

The simplest of the window-control methods is known as the binary-divide window-control. The new upper

bound of the window, w, is set to the value (a+b)/2. If there is a collision, b is set to w; if the line is idle, a is set to

w. The algorithm is reiterated until the minimum is isolated. The expected number of contention slots to resolve the

collisions is O (log2n) I13].
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procedure window_protocol_station_i;

/* procedure to find window boundaries for isolating one of the contending stations */
/* window - function to calculate window size w,

* random - function to generate local contention parameter,

* transmitsignal - function to send signal to bus with other stations synctu:onously,
* detect - function to determine state of the network,

* x - local contention parameter,

* Ib - lower bound of interval containing minimum

* ub - upper bound of interval containing minimum

* contending - boolean to continue the contention process,
* state- state of the network: collsion, idle, or success
*/

[
lb := L;

ub := U;

r := random(L,U);

w := window(lb,ub);

contending := true;

while (contending) do [

if (r _>Ib and r _<w) then [

i'* parameter is inside window, contend for bus */

transmit_signalO;

/* test for unique station in the window */

state := detect;

if (state = collision) then

/* update upper bound of interval containing minimum */
ub := w;

else/* successful isolation of minimum */

retum(lb,ub);

w := window(Ib,ub); ]
else[

state := detect();

if (state = idle) then

/* all parameters are outside window */

/* update lower bound of interval containing minimum */
lb := w

else

/* some other parameters are inside window, s'op contending */
contending := false; ]

]
return(failure);

Figure 2.1. Procedure illustrating the execution of the window-control

algorithm by a single station [13]
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Fig. 2.2. Window-Control Algorithm [13]

2.2.3. Dynamic Programming Window-Control

A significant improvement to the number of contention slots to resolve collisions can be gained by using a

dynamic programming window-control algorithm. The algorithm attempts to minimize the expected number of

contention slots to resolve collisions, M (a,b), given that there are n contention parameters in (a,U], and that colli-

sion occurs in the current window. The following notations are first defined [13]:

M (a,b):
The minimum expected number of iterations to resolve contention given that there are n contention

parameters in (a, U ] and collision occurs in the current window (a,b ].

g (w,n,a,b):

Probability of success in the next iteration if a window of (a,w ], a < w < b, is used.

l (w,n,a,b):
Probability of collision in the next iteration if a window of (a,w ], a < w < b, is used.

r (w,n,a,b):

Probability of no trans,dssion in the next iteration if a window of (a,w ], a < w < b, is used.

It follows directly from the above definitions that

l(w,n,a,b) + g(w,n,a,b) + r(w,n,a,b) = 1. (2.1)

Functions l(w,n,a,b),r(w,n,a,b), and g(w,n,a,b) are conditional probabilities based on the condition that

there was a collision in the last iteration of the protocol. This implies that there must be at least two contention

parameters within the boundary (a,b], and that all contention parameters must be greater than a. This condition can
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bedesignatedaseventA.

Three mutually exclusive events can occur by choosing w, a <w <b, which can be identified as follows [I._1.

B={exactly one of the xi's is in (a,w], given that all xi's are greater than a}

C={no xi is in (a,w ], given that all xi's are greater than a}

D= {more than one xi is in (a,w ], given that all xi's are greater than a}

From these events, the conditional probabilities can be expressed as [13]:

g (w,n,a,b) = Pr(B IA) =
Pr (a (") B)

Pr(A)

r(w,n,a,b) = Pr(C IA)=
Pr(A _ C)

Pr (A)

(Z2)

(2.3)

Pr(A) = (I-a)" - n (b-a)(1-b) "-t - (1-by'
(l-a)"

g (w,n,a,b) - n (w-a)[(1-w) "-1 - (l-b) "-i ]
Pr(A).(l-a)"

r (w,n,a,b) = (l-w)" - n (b-w)(l-b) "-1 - (1-by'
Pr (A)'O-a)"

The function, M (a,b), can then be formulated recursively as follows:

,,t/(a,b) = a <w <hi. 1 + g (w,n,a,b ).O + l (w,n,a,b ).M (a,w) + r (w,n,a,b ).M (w,b)

(2.4)

(2.5)

(2.6)

(2.7)

A boundary condition 8 must be set to terminate the algorithm after a reasonable number of iterations. By

ass, maing that all contention parameters differ by at lealst _5, contention can :,lways be resolved in one step w'wn the

tions can be expressed as:

The set A (") B represents the event that exactly one xi is in (a,w], one xi is in (w,b], and all other xi's are

greater then w. The set A ("5 C represents the event that at least two xi's are greater than w.

Let Fi(x ) be the distribution function governing the generation of x_. Wah and Juang presented the formulas

for g,r and Pr(A) for the general case of arbitrary independent distribution functions [13]. The functions g and r

can be simplified by assuming uniform distribution functions for each station. F_(x) is then equal to x. These func-



windowsizeissmallerthan5. Therefore,thefollowingboundaryconditionisincluded:
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M (a,b)= 1 for all (b-a) < 5 . (2.8)

The dynamic programming algorithm requires an average of only 2.4 contention slots to resolve collisions.

What is significant is that this value remains constant as the number of contending stations increases. Figure 2.3

illustrates the performance of the bin,'u-y exponential backoff method as compared to the dynamic programming

method.

There is an extensive computational overhead associated with this method. This overhead can be overcome.in

one of two ways. The first is to precompute N(a,b) for a truncated dynamic programming algorithm and store the

Expected
Number
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Contention

Slots

30

20

10

binary

cxponential
backoff

dynamic programming

0
0 20 40 60

Number of Contending Stations

Figure 2.3. Binary Exponential Backoff vs. Dynamic Programming Window-Control
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results of optimal w's for _lch (a,b) pair in a table. When (b-a)<_, a binary-divide algorithm can be used to com-

plete the iterations. This method was used in the simulation results shown in Figure 2.3. The other method to

reduce computation time involves using approximations to the dynamic programming algorithm as discussed in the

next section.

2.2.4. Greed), Window-Control and Approximations

The computation time of the dynamic programming algorithm can be greatly reduced by finding a window to

maximize the success probability in just the next iteration rather than in all possible future iterations. This technique

requires an average of only 2.7 contention slots for bus contention [13]. Similar to the dynamic programmqng

window-control algorithm, the overhead is also independent of the number of contending stations.

Computation time can be further reduced by using an approximation to the greedy window control scheme

that calculates w directly from the following formula [13]:

-c - - 40
w = (2.9)2

where

C = -(n -1)IF(a) + F(b)] + 2
n (2.10)

D = F(a) + F(b) + (n-2)'F(a).F(b)
n (2.11)

This calculation of w has been shown to have a performance comparable to the optimal greedy window-control

algorithm [13].

A final simplification is mentioned by Juang in his Ph.D. dissertation [17]. He showed that the window used

in the first contention slot is critical to the overall performance. The ideal window for this first slot is 1In. After the

first slot, a binary-divide scheme may be used to complete the algorithm. Again, the performance is comparable to

that of the pure dynamic programming window-control algorithm.

2.2.5. Load Estimation

If the load of the channel is not exactly known, it mu_t be estimated from the distributions of contention

parameters and statistics ef previous channel activity [13]. \Yah and Juan_ have presented a method for estimating
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load,basedonthewindowsusedto isolatethesuccessfulstationsinpreviouscontentionslots[13]. Themethod

computesamovingaveragebasedonallpreviouswindows,w(1),w(2)..... w(t).Thismovingaverage,w,,,_(t), is

computed according to the following formula [13]:

w,,,v(t-1) + w(t)
w,,v(t) = (2.12)

2

The estimation of the number of stations, n, (t), is approximated by the form ula [ 13 ]:

-1

n,(t) = i gc.xt))'o-"-w,,,v't"' 0 < w,.v(t) < 1 (2.13)

This estimate of n can be used in the approximate greedy window-control algorithm, yielding a performance

very close to that when the channel load is exactly known. However, the estimate also assumes that there is no

noise on the network. The effects of noise on load estimation will be discussed in Chapter 3 and illustrated by simu-

lation in Chapter 4.
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3. EFFECTS OF NOISE ON CSMA/CD BUS CONTENTION

One major problem in any communication network is noise. Noise on a network may be defined as any

unwanted signal present in the transmission medium. This chapter discusses the types of noise, how noise can affect

the. physical operation of an Ether'net network, and how noise affects the various window-control algorithms for bus

contention.

The effects of noise on the window-control algorithm are divided into two cases in which noise is either

detected by all stations or by just some of the stations. In the first case, the windows of different stations remain in

phase, but in the second case the windows may become out of phase. All window-control algorithms assume that

the channel load is exactly known and that noise is independent for each contention slot. The last section discusses

the effects of noise when these assumptions are invalid.

3.1. Types of Noise

There are basically four types of noise: thermal noise, intermodulation noise, crosstalk, and impulse noise

[15]. Thermal noise is caused by the thermal agitation of electrons in the transmission medium. It varies as a func-

tion of temperature, but is otherwise fairly predictable. Thermal noise is often referred to as white noise [15]. Most

communication systems take thermal noise into account in their design and use signals with sufficient strengths such

that thermal noise has little effect. Although thermal noise limits the effective bandwidth of any communication

medium, it normally does not cause signals to be misinterpreted by the receiver. Consequently, thermal noise is not

a factor in regard to the window-control algorithm.

Intermodulation noise is due to signals of different frequencies producing a new signal that is the sum or

difference of a multiple of those frequencies, lntermodulation noise is important when two or more simultaneous

transmissions of different frequencies are attempted on the line. Since all transmission attempts in the window-

control algorithms are made at the same frequency, intermodulation noise is also not a factor.

Crosstalk can be a problem depending on the communication medium used. It is rare in coaxial cable and

nonexistent in optical fiber, but might occur in twisted-pair lines. Crosstalk is electric coupling between lines such

that thc signal on one line affccts the signal on t!_e c_ther. Nevertheless, the magnitude of the noise produced by
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crosstalk is relatively small and can usually be taken into account by the system designer [15].

Impulse noise, however, is a major factor in producing false signals. Impulse noise is an unpredictable burst

of electrical energy that lasts a random amount of time. It can be caused by lightning, electromagnetic radiation, or

any sudden pulse of energy. Such noise can often be found in 'harsh environments, such as those encountered in the

military. Unlike the other types of noise, the randomness in the occurrence, duration, magnitude and nature of

impulse noise makes it impossible to predictably filter out. Furthermore, impulse noise is usually of sufficient

strength to cause logical l's to be misinterpreted as logical O's and logical O's to be misinterpreted .qs logical l's. It

can also cause a whole block of transmitted signals to be altered dramatically. As a result, impulse noise has the

greatest net effect on transmission on CSMA/CD networks and will be the main type of noise considered in this

thesis.

3.2. Effects of Noise on Ethernet Network

To determine the effects of noise on bus contention on Ethernet networks, it is necessary to discuss the encod-

ing of transmission signals on the interpretation of network status by stations, and the effects of noise on this

interpretation. According to the physical layer specifications of Ethernets [16], an idle transmission line is set to a

value of 0 volts. Data is encoded using Manchester Codg, in which a logical 0 is represented by a transition from

-0.225 V to -1.825 V, and a logical 1 is represented by a transition from -1.825 V to -0.225 V. Bits are transmitted at

a frequency of 10 MHz, and the transitions are set to occur in the middle of each bit. Figure 3.1 illustrates the Eth-

emet specifications for its Manchester encoding scheme.

Any two different transmitting stations are likely to have their clocks skewed, and if simultaneous transmis-

sions are attempted by both, the receiver will likely detect a collision either by a voltage level that is lower than it

should be or by the lack of a detected transition in the data at the specified time. The receiver may also detect unex-

pected transitions less than 50 ns (1/2 bit time) apart. Figure 3.2 illustrates the results of a collision. Note that in the

case of a collision, the overall high voltage is reduced from -.225 V to -.45 V and that the low voltage occurs at

-3.65 V which is well below -1.825 V. Furthermore, there are two transitions less than 50 ns apart.

When collision is detected by the transmitting stations, the stations do not abort transmission immediately, but

cc_ntinue to transmit for a period of time to guarantee that the collision is heard by all stations [ 16]. The resultant
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transmlssion is known as a jamming signal.

What happens to a normal signal in the presence of noise? Most impulse noises introduced into the system

will cause the voltage levels to be incorrect or cause the 10 MHz transition not to be detected. For example, a -1 V

surge for 200 ns would cause the voltage levels to drop to -1.225 V and -2.825 V triggering a false collision, as

illustrated in Figure 3.3. Figure 3.3 also shows how noise could interfere with the signal in such a way as to mask

out the expected transition due to the 10 MHz clock. In this sense, it is relatively easy for noise to generate a false

collision on the bus.

A false idle contention slot can occur only if there is a positive voltage surge that cancels out the signals

present on the bus. As it is, a +2 volt surge will cause all voltages on the line to be greater than or equal to 0 when

only one station is transmitting. Hence, it is necessary for the receiving station to recognize that voltages greater

than 0 can be caused only by noise. The current Ethernet specifications [16] do not address this case, although

minimal hardware can be added to the transceiver to detect positive voltages on the line. Under these conditions,

the only way a false idle contention slot can occur is when the noise is the exact inverse of the signal, resulting in a

net vohage of 0. This event is extremely unlikely for any signal, and hence, the probability that either a collided or
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successful contention slot will falsely be detected as an idle slot is negligable.

It is also unlikely that a successful contention slot is falsely detected. In the case of an idle contention slot, a

false success could be triggered by an arbitrary 10 MHz signal that varies between -.225 V and -1.825 V. Likewise,

a collision could falsely be detected as a success when noise cancels out the collision in such a way as to produce a

10 MHz signal that varies within the -.225 to -1.825 voltage range. Both of the above are extremely unlikely since

first, random noise is likely to have a voltage outside the range between -.22i V and -1.825 V, and second, even if

the voltage levels are valid, the noise is likely to have a frequency other than 10 MHz. The case of a collision being

falsely detected as a success is even more unlikely, since either transmitting station will detect a signal different

from the one it transmitted, and enforce the collision with a jamming signal. In the worst case, if an idle contention

slot is falsely treated as a successful transmission, all stations will be expecting the nonexistent successful station to

transmit, resulting in an idle channel. This case can be logged as an error, and the stations can restart the algorithm.

All in all, the probabilities of a false idle slot or a false successful slot are extremely small, while the proba-

bility of a false collision in the presence of impulse noise is very likely. In modeling the effects of noise, a fourth

state, noise, could be added to give additional information regarding the state of the network. However, noise is only

distinguishable from a true collision when there are voltages greater than 0 on the transmission line. In all other

cases, noise is indistinguishable from collisions. Therefore, for the purposes of evaluations, all noise will be treated

as resulting in false collisions.

There is still the issue of whether all stations on the network will detect noise when it occurs. The probability

that this is true is high for noise on the global bus since Ethernet is designed to allow collisions to be detected by all

stations through use of a jamming signal. It is very unlikely that the jamming signal will be misinterpreted as a false

success or no transmission since the transmitting station is also listening to the line and can continue to issue the

jamming signal if it detects that the signal is being cancelled out by noise. This leaves the problem, however, of

noise occuring while no stations are transmitting. In this case, no station would issue a jamming signal to amplify

the false collision. Whether a station detects a collision will then be dependent on the sensitivity of a stations's

transmission-line sensing equipment.

Unfortunately, one cannot guarantee that all stations will always detect all noise whenever it occurs. Consider

the Ethernet network in Figure 3.4. If noise is more prevalent only' on the right side of the repeater, there will be
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(
occasions when stations 4,5 and 6 detect noise while stations 1,2 and 3 do not. If station 4 has a noisy connection to

the network, it might detect noise, while the others do not. There might also be the case where the collision and

noise detection mechanisms are more sensitive in some stations than others. Basically, any condition that causes

noise to be localized to one or more areas of the network, or any discrepancy in transmission-line sensing equipment

of some stations, may result in the stations detecting different states of the network during a given contention slot.

3.3. Effects of Noise on Window-Control Algorithms

The previous section discusses the fact that noise will almost always result in the detection of a collision by

the stations on the network. If there is already a collision, noise has no effect. But if there is no collision, some or

all of the stations may detect a false collision due to the noise, and inappropriately adjust their windows.

Analysis of the noise problem can be divided into two cases. The first case assumes that noise is always

detected by all stations, and that all stadons treat noise as a collision. Provided that the stations start with the same

windows in the first contention slot, their windows will remain synchronized with respect to each other, since they

always detect the same state of the network. The second case is more. general and assumes that a subset of the sta-

tions detect noise _'hilc others do not. As a result, it is possible for stations to have different window boundaries in a
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given contention slot. These two cases are discussed separately in the following sections.
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3..3.1. Noise Detected by All Stations

The assumption that the windows remain synchronized is necessary in developing a theoretical analysis for

the performance of the window control algorithms under the presence of noise. The following sections discuss the

effects of noise on the window-control algorithm along with the development of two new window-control algo-

rithms that attempt to overcome the noise problem-- the two-phase algorithm and an approximate recurrence rela-

tion.

3.3.1.1. Original Window-Control Algorithm

When noise is apparent, windows in the original window-control algorithm may be updat_l incorrectly. Con-

sider the scenario in Figure 3.5, where there is a window with no contention parameters in it and noise occurs in that

slot. After the first real collision, the upper bound of the window is reduced to w_, but all contention parameters are

greater than w 1. Now suppose there is a burst of noise in the next contention slot that causes all stations to detect a

false collision and reduce the upper bounds of their windows to w 2. In successive iterations, idle contention slots are

detected and cause the upper bounds of the windows to increase to wa,w4,w5, and so on, but all are less than w I . In

any event, the upper bound of the windows will never become greater than w _, and the contention protocol will con-

station I L w 2 w3 w,t w5 U

station 2

station 3

WI

!

I

i
" I

O

Figure 3.5. Window-Control with Noise
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tinuetoiterateindefinitely.

Tocorrectthisproblem,it isnecessarytoterminatetheprotocolafterthewindowhasbeenreducedtoacer-

tainsize.Theterminationpointcanbesettothevalue5,theresolutionof thecontentionparameters,asdefinedin

Chapter2. If thewindowis reducedto 5,thealgorithmmustberestarted.Thenumberof contentionslotsto

resolvethealgorithmwill thendependontheprobabilitythatcollisionisresolvedbeforethewindowisreducedtoa

size5andtheassociatedprobabilityforthisevent.If theprobabilityofnoiseishigh,thenit ishighlylikelythatthe

windowwill bereducedtoasizelessthan5withoutisolatingtheminimum.If 5 issmall,thenextensiveoverheads

areincurredbeforefalsecollisionsaredetected.WithrespecttothewindowprotocolsoutlinedinChapter2,the

numberof contentionslotstoresolvecollisionhastobemodifiedbytheprobabilitythatcollisionisresolvedbefore

thewindowisreducedtoa size5. LetM be the number of contention slots to either isolate the minimum or reduce

the window size to 5, and S the probability of success before this event occurs. Define 7" as the total number of con-

tention slots to resolve contention. T is then formulated as follows:

T = S.M+S (1-S)-2M+S (1-S)2"3M+S (l-S) 3-4M+- • • (3.1)

T = SM._i'(1-S) i-_ (3.2)
i=1

T(1-S) = SM._i.(I-S) _ (3.3)
i=l

Subtracting (3.3) from (3.2) yields:

N

TS = SM. E(1-S) _ (3.4)
i=1

The summation in (3.4) is a standard geometric distribution that reduces to I/S [18]. Therefore, Equation (3.4)

reduces to:

T = M/S (3.5)
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3.3.1.2.Two-PhaseAlgorithm

Theoriginalwindowprotocolsuffersfromtheproblemthatoncetheupperboundof thewindowisreduced

to a valuesmallerthanthesmallestcontentionparameter,it is notpossibleto recoveruntil thewindowsizeis

reducedtoasizelessthan8. Toalleviatethisproblem,onecanuseatwo-phasealgorithmthataddsacheckphase

eachtimenotransmissionisdetected.If notransmissionisdetectedinagivencontentionslot,thentheotherhalfof

thewindowistestedtoseewhetherit containsanycontentionparameters.If thereisacollision,theprotocolcarries

onasnormal,butif notransmissionisdetectedagain,thenthewindow'supperboundis increasedtoitsprevious

value,whilethelowerboundis increasedtothecurrentupperbound.ReferringtoFigure3.5,thetwo-phasealgo-

rithmwouldmodifythesituationasfollows:

Slot1) Collision:
windowreducedto(L,w1].

Slot2) Collisionduetonoise,althoughnotransmissionshouldbedetected:
windowreducedto(L,w2].

Slot3) Notransmission:
windowraisedto(w2,wI].
Note:Intheoriginalwindowprotocol,thewindowusedis(w2,w3].

Slot4) Secondnotransmission:
windowraisedto(wi,wo].

Slot5) Protocolcontinuesnormally,unlessfurthernoisedevelops.

Thestateof no transmission is used to correct the windows, since whenever no transmission occurs, it is

guaranteed, based on the assumptions discussed earlier, that the transmission line is definitely in that state. There-

fore, whenever no transmissions occur twice in sequence, it is guaranteed that no contention parameters remain

within the lower and upper bounds defined for the window. As a result, it is necessary to retract the lower and upper

bounds to a different region of the contention parameters. This process is repeated until a region with a collision is

found. Since a collision may be due to noise, the occurrence of collision in a contention slot cannot be used to per-

manently fix the upper bound of the window. If the probability of noise is low, then most of the collisions are due to

simultaneous transmissions in a window. The algorithm is set to terminate when a successful transmission is

detected, since it is assumed that there will be no false detections in this case.

Inherently, the two-phase algorithm implies need of additional memory to store previous upper window boun-

daries. However, these bounds arc normally defined in the implementation of the window-control algorithms, as

they are prccomputed at desigr_ !ime and looked up in re_d timc. I11 the case in which the window b_undaries arc
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computedin realtime,suchasthebinary-dividealgorithm,themaximumnumberof storedwindowboundariesis

boundedbythedifferencebetweenthenumberofcollisionsandthenumberofnotransmissions.

Thiscanbebestillustratedbythebinary-dividewindowcontrol.Assumeaninitialwindowsizeof 1anda

resolution8=2-4. Eachcollisioncausesthewindowsizetodecreasebyafactorof two andincreasesbyonethe

numberofupperboundsthatmustbestoredinmemory.However,eachnotransmissionretrievesapreviousvalue

oftheupperbound,andthereforedecreasesthenumberofupperboundstobestoredbyone.Intheworstcasethere

will ben successive collisions, resulting in n upper bounds stored. The next collision will force the algorithm to re-

start, as the maximum number of collisions is bounded by n. Although each collision decreases the window size by

a factor of two, each no transmission increases the window size by a factor of two only after the second no transmis-

sion is detected. It takes only one collision to decrease the size of the window, but it takes at least two no transmis-

sions to increase the window size. Unless there is a sequence of n collisions, the window shrinks at a rate that is

faster than the net growth of the memory stack and, therefore, the maximum amount of memory needed to store the

upper bounds is n. A similar result holds true for the dynamic-programming protocol, except that during collisions

the window is reduced by at least a factor of two. Hence, the required memory is likely to be less than n.

There is additional computational overhead to check the other half of the window in the two-phase protocol.

Although the probability of success is increased in the two-phase protocol over the original protocol, the number of

contention slots to reduce the window size to 5 is also increased. Therefore, the net effect on the total number of

contention slots to resolve contention, as defined by Equation 3.5, is uncertain. A comparison of the performance of

the two-phase and the original protocols is included in the next chapter.

3.3.1.3. Heuristic Window-Control with Noise

The optimal window for each contention slot can be determined by including the probability of noise as a

parameter in the dynamic programming window-control algorithm. First, one must consider the effects of noise on

state detection and window boundaries. No information concerning the state of the network can be gained during

the contention slot in which noise occurs. Windows can be updated with certainty after detection of a successful

transmission or idle state on the network, since those states can occur only when there is no noise. Therefore, one

can always be certzfin qf the lower bound of the window. Windows can be updated only conditionally after detec-
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tionof acollision,becausethecollisionmaybeduetonoise.Therefore,onecannotbecertainof thcupperbound

ofthewindow.

Duringacollision,if noisedoesnotoccur,it isguaranteedthatthereareatleasttwocontentionparameters

thatarelessthantheupperboundof thewindow.However,if noiseoccursduringacollision,onecanguarantee

onlythatthereareat leasttwocontentionparameterslessthantheupperboundof somepreviouswindowinwhich

noisedidnotoccur.Let a true collision be defined as a collision in which no noise occurs. One can guarantee that

there are at least two contention parameters smaller than the smallest previous upper bound of the window in which

a true collision occurred. Unfortunately, it is not possible to differentiate between true and false collisions, so one

must keep track of the upper bounds of the windows from all previous collisions. Since the choice of the window is

history dependent, it cannot be optimized by dynamic programming methods because the Principle of Optimality is

not satisfied.

Assume that the probability of noise is independent for each contention slot and has a fixed value, p, that is

known by all stations. Also, assume that the number of contending stations, n, is known. Finally, assume that each

contention parameter, x,., has a distribution, F (x), and lies in the interval (L, U ]. The following definitions are used

to formulate the problem of choosing the upper bound as a recurrence.

M (a,q [k ]):

The minimum expected number of contention slots to resolve contention, given k-I previous collisions
with upper bounds of windows stored in the k-element array, q [k ].

g (a,w,q [k]):

The probability of successful transmission in the interval (a,w ], given k-I previous collisions with upper
bounds of windows stored in the k-element army, q [k ].

r (a,w,q [k ]):

The probability of no transmission in the interval (a,w ], given k-I previous collisions with upper bounds
of windows stored in the k-element army, q [k].

l (a, w,q [k ]):

The probability of collision in the interval (a,w], given k-1 previous collisions with upper bounds of
windows stored in the k-element army, q [k ].

In the array, q [k ], q I=U, and qi is the upper bound of the window during the (i-l) rh collision. It follows from the

above definitions that:

g (a,w,q [k ]) -_ r (a,w,q [k ]) + l (a,w,q [k ]) = 1. (3.6)
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Lettheelementsofq [k ] be ordered from smallest to largest; q 1 is now min (q _ • • • qk) and qk = U. Let a true

upper bound be defined as the upper bound of the window in which a true collision occurred. Since p is indepen-

dent for each contention slot, each ql, except qk, has a probability p of being a true upper bound, and (I-p) of being

false. The probability that q t is the smallest true upper bound is (l-p). The probability that qi is the smallest true

upper bound is equal to the probability that all smaller qi's are false and qi is true. The probability that all q_'s are

false is equal to pk-1. Let Pr (Qi) be the probability that ql is the smallest true upper bound.

pi-l.(l_p) 1 < i < k

Pr(Qi) = ]pk-1 i = k (3.7)

k

All Qi's are mutually exclusive, so _Pr(Qi) = 1. If qi is a true upper bound, then there are at least two contention
i=1

parameters in the interval (a,qi] and all xi's are in the interval (a,U ]. This condition is designated as event (A IQi),

with the following probability:

[ 1-F (a)] n - iF (ql)-F (a)].[1-F (ql)],,-t _ [ 1-F (qi)]"
Pr (A IQD = (3.8)

[l-F(a)]"

If qi is the smallest true upper bound, three mutually exclusive events can occur by choosing a < w < qi,

which can be identified as follows:

B = { exactly onexi is in (a,w], given A I Qi }
C= { noxi isin (a,w], given A IQi }

D = { more than onexl is in (a,w], given A I Qi }

Using Bayes' rule [19], the probabilities of g (a,w,q [k ]) and r (a,w,q [k ]) can be expressed for all qi's as:

g (a,w,q [k 1) =
k k er((A IQ,) _B)

Pr(Q_).Pr(B IA IQi ) = E er(Qi)
i=l i---I Pr(A I Qi )

w<qi _<qi

(3.9)

k Pr ((A IQi) ('_ C)
• (a,w,q [k ]) = Y'. Pr (QD'Pr(C IA I al) = Y]. Pr (oD

i=1 i=l Pr (A IQi)
w<qi w<qi

(3.1o)

The set ((A I Qi) _ B) represents the event that exactly one xi is in (a,w], that at least one xi is in (w, ql], and

that all other xi's are in (w,U ]. Appropriate substitution in Equation (3.9) yields:
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t [F (w)-F (a)]" [[ 1-F (w)] "-I - [1-F (qi)],,-I ]
g(a,w,q[k ])= y" Pr(Qi).

i=1 Pr (A IQi).[ 1-F (a)]" (3.11)
w<qi

The set ((A IQi ) (-_ C) represents the event that at least two xi's are in (w,qi], and all xi's are in (w,U].

Appropriate substitution in Equation (3.10) yields:

k [I -F (w)]" - [F (qi) - F (w)] .[ I-F (qi)]"-I _ [ I-F (qi)]"-1
r(a,w,q[k])= _ pr(Qi)

,=1 Pr(A I Qi).[l-F(a)]" (3.12)
w<qi

The heuristic recurrence relation can then be expressed as:

}M(a,q[k])=a<_,<U 1 +g(a,w,q[k])'O+l(a,w,q[k]).M(a,q[k+l])+r(a,w,q[kl).M(w,q[k]) (3.13)

The recurrence terminates upon detection of successful transmission. This is represented by the term

g (a,w,q [k ])'0 in Equation (3.13). However, since the number of collisions may be infinite, the number of states is

unbounded, and Equation (3.13) cannot be solved. Consequently, only an approximation of the exact recurrence

equation may be realized.

The following approximauon attempts to reduce the number of states to a tractable finite value, by making

certain assumptions. It assumes that the number of contending stations, n, and the probability of noise, p, are known

at the start of contention. It also assumes p is independent for each contention slot. Furthermore, the approximation

assumes that the upper bound of the next window chosen, w, is always less than the upper bound of the current win-

dow, and that after a collision, the upper bound of the window is reduced to w. Finally, although the conditional

probabilities of success, idle and collision are dependent on all previous upper bounds of the windows, the only

upper bounds used are the current upper bound and the absolute upper bound of the contention parameters. The

probabilities in Equations (3.6-3.12) are then solved by using k =2, q l=b and q2=U.

If one truncates the recurrence relation at (b-a) < 5, it is possible that contention may not be resolved.

Therefore, M(a,q [k ]) must be redefined as the estimated number of contention slots to resolve contention either

successfully or unsuccessfully, given that the current window is (a,b] and that all contention parameters are in

(a,U]. Since the only variable upper bound of the window is b, the approximate recurrence equation can be

renamed in terms of a, w and b. Using the assumptions previously stated, the approximate recurrence equation i._:
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minf t
M (a,b) = a <w <b _ I + g (a,w,q [2])-0 + 1(a,w,q [2]).M (a,w) + r (a,w,q [2])'M (w,b) (3.14)

Since the recurrence relation always terminates when (b-a) < 8, the boundary condition for M (a,b) is:

M (a,b) = 1 when b-a < 5 (3.15)

As stated in equation (3.5), the total number of contention slots to resolve contention successfully is M/S.

However, S is also dependent on all previous windows, and is as complex to model as M. It can also be approxi-

mated as a recurrence equation using the same assumptions that were used to generate M(a,b) in Equation (3.14).

Let S (a,b) be the probability of successfully isolating the minimum, given the current window, (a,b ], upper bound

of next window, w, and all contention parameters in the interval (a,U]. S (a,b) is the probability of success in the

current window plus the probability of collision times the probability of success in window (a,w ] plus the probabil-

ity of no transmission times the probability of success in window (w,b ]. S (a,b) can then be formulated as:

(a,b)" _ g (a,w,q )S =| [2]) + l (a,w,q [2])-S (a,w) + r(a,w,q [2])-S (w,b) (3.16)

The boundary condition for S (a,b) when b-a < 8 is the probability that there is exactly one contention

parameter in the window (a,b]. This is equal to g(a,b,q [2]).

The minimum number of contention slots, T(a,b), is then defined as:

T(a,b) rain M(a,b) (3.17)
= a <,,<b S(a,b)

T(a,b) = 1 for b-a < 8 (3.18)
g (a,b,q [2])

It must be guaranteed that the w chosen for each M(a,b) is consistent with the w chosen for each S(a,b). Since

M(a,b) and S(a,b) are computed from smaller subintervals, the w's for these subintervals can be computed and

stored in a lookup table to be shared by both M(a,b) and S(a,b). The algorithm for deriving T(a,b) is simulated in

the next chapter, and the associated program is given in Appendix B.

The approximate recurrence relation also requires additional memory overhead for implementation. While

the original dynamic programming algorithm needs a separate table entry for each n, the recurrence relation requires

a separate table entry for each combination of n and p. The number of entries for each (n,p) pair can be reduced by

using a truncated binary decision tree as outlined by Juang and Wah [13]. The decision tree chooses one of two
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pathsdependingonwhetherastationdetectscollisionoranidleline. Nopathisneededforthedetectionof asuc-

cessfultransmission,sincesuchdetectionterminatesthealgorithm.

Usingafour-leveldecisiontreew_th16-bitentries,and16-bitrandomnumbersforthecontentionparameters,

each(n,p)pairwouldthenrequire0.03Kbytesofmemory.ThestandardEthernetcontrollerchip,MCS8396,has8

KbytesofROMavailable,so266(n,p)pairsmaybestored.Thenextchapterdiscussesapossibleimplementation

of theapproximaterecurrencerelationinarealsystem.

3.3.2. Windows Becoming Out-of-Phase

This section discusses the case of the windows of the contending stations becoming asynchronized due to

noise. As was discussed earlier, it is possible that not all stations may sense the same state of the network during a

given contention slot. Figure 3.6 illustrates how this can affect the window-control protocol. During the first con-

tendon slot, all stations except station 1 transmit, and all stations reduce the upper bounds of their windows to w2.

Suppose in the second contention slot, station 2 detects noise while the others do not. It will then lower its upper

bound to w3(2), while the other stations detect no transmission and raise the upper bounds of their windows to w3.

station 1 L w3(2 ) w 2 w3 w I U

station 2

station 3

station 4

station 5

i !

I I

I I

I I

I I

i 0 t

o

I

!

!

0

o

Figure 3.6. Wrong Minimum Identified by Window-Control Algorithm
when Windows are Out-of-Phase
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Now,duringthethirdcontentionslot,only station 3 transmits and is successful. Station 3 is, therefore, falsely

identified as the minimum.

To correct this problem, one logical solution is to add a broadcast phase after the minimum has been

identified. After a station transmits successfully, it broadcasts its parameter, x, to all other stations in the next mes-

sage. Following the first broadcast, all stations with contention parameters less than x attempt to broadcast their

parameters in a second broadcast. If there is a collision, all stations restart the window-control algorithm with the

upper bound of the contention parameters set to x. If some station broadcasts its parameter successfully during the

second broadcast phase, it captures the bus and begins transmission of its message. Otherwise, if the line remains

idle during the second broadcast phase, the original successful station captures the bus and transmits its message.

There is an additional problem in that all stations may not terminate the algorithm at the same time. This

problem can be alleviated by the successful station continuing to transmit in the next cr contention slots before

broadcasting its parameter, where c must be long enough to guarantee that all stations have an opportunity to either

detect that successful transmission is occurring or else timeout and terminate the algorithm. During the contention

slot that a station succesfully transmits, it will be the only station with a contention parameter smaller than the upper

bound of its window. Since the other stations' contention parameters are higher than the upper bounds of their win-

dows, they will continue to sense the line but will not transmit. In the following contention slots, one of two events

will. occur to terminate iterations of new windows. The unsuccessful stations can either detect success and wait for

the broadcast, or they can detect a series of false collisions and reduce the upper bounds of their windows until their

window sizes become smaller than 5. The number of contention slots to reduce a window from its original size to _5,

given a series of collisions, is O ((log2(l/8)), and is the lower bound on c. The event of a station reducing its win-

dow to a size smaller than 8 can be designated as the start of a timeout period. If a station senses a successful

transmission within this timeout period, it listens for the broadcasted parameter. If a station senses an idle line

within the timeout period, it restarts the algorithm. Otherwise, if a station continues to sense false collisions during

the entire timeout period, it aborts its contention attempt.

If a station aborts contention due to a timeout, or detects success in the middle of the broadcast phase, it will

not know the value of the broadcasted parameter. Also the value of the broadcast parameter might become cor-

rupted, and therefore, unreadable due to noise. These problems can be remedied by all stations involved in such
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events forcing a collision in the second broadcast phase, and restarting their algorithms with an upper bound of U. In

this case, the upper bounds of the windows may not be the same for all stations in the restarted algorithm, but this

situation will be corrected during the next broadcast phase. Operation of the window-control algorithm with broad-

cast phase is illustrated in Figure 3.7.

The broadcast phase adds significant overhead to the time required to resolve contention. For applications

where it is not necessary to identify the minimum contention parameter, the broadcast phase can be deleted. The

successful station automatically captures the bus, and all other stations abort contention upon either detecting suc-

cess or reaching a timeout. Even when all stations detect noise independently, the performance of the window-

control algorithm is still better than Ethernet's exponential backoff algorithm. These results are shown in Chapter 4.

3.4. Dependent Noise

In reality, noise is often longer than one contention slot in length. Therefore, the probability that noise occurs

during a given contention slot is dependent on whether noise occurred in previous contention slots. To model

dependent noise, it is necessary to retain state information for the entire history of contention. Because of the com-

plexity of modelling dependent noise, this section discusses only its general effects and does not attempt a detailed

analysis.

In regards to the window-control algorithms, noise in successive contention slots will result in false collisions

that continue to reduce the window. If the noise terminates before the window is reduced to a size less than _5, then

the algorithms continue normally. If the noise continues after the window is reduced to a size less than _5, the sta-

tions enter a timeout period, as discussed in the last section. If the noise abates before the end of the timeout period,

then the stations will restart the window-control algorithm; otherwise, the stations will abort the algorithm. The

general effect of longer bursts of noise is that the probability of reducing the window to a size less than _5without

being successful is greater. As a result, the algorithm is more likely to need to be restarted, and the total number of

contention slots to resolve contention is increased. The behavior of the system under long bursts of noise should be

similar to the behavior of the independent noise models for very high probabilities of noise.

On the other hand, short bursts of noise less than one contention slot in length will only affect the current con-

tcntion slot. Therefore, such noise can be modelled as independent noise. If the burst of noise is too short, it might
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notbedetectedbyall stations,butthisproblemwasalreadydiscussed.Consequendy,althou.ghtheprobabilityof

noiseis actuallyhistorydependent,thegeneralbehaviorof thesystemcanstill be fairlyaccuratelydetermined

assumingafixed,independentprobabilityofnoiseforeachcontentionslot.

3.5. Load Estimation

Noise also has an effect on load estimation. As stated in Chapter 2, the channel load is estimated according to

a moving average of the windows used to successfully isolate the minimum contention parameter. However, noise

causes false collisions such that the window used to isolate the minimum contention parameter may be lower than

the window that is actually needed. Consequently, the added collisions due to noise may make the network appear

as if the channel load was higher. The next chapter simulates the effects of noise on load estimation for the approxi-

mate greedy window-control algorithm.

3.6. Summary

This chapter has shown that noise can affect the detection of the states, collision, idle and successful transmis-

sion on the network. Noise may result in the false detection of a collision, but it will almost never result in the false

detection of a successful transmission or idle line. Noise can also cause the window boundaries of the contending

stations to become out of phase when its detection is localized to a particular station or set of stations.

This chapter outlined the effects of noise on the original window-control algorithm for the case where noise is

detected by all stations. It also presented two protocols for countering these effects: the two-phase algorithm and

the approximate recurrence relation given by Equation (3.18). In all protocols, it is possible for the window to be

reduced to a size less than 6 without isolating a station. In such cases, the algorithms must be restarted.

In the case where the windows may become out of phase, it is possible for the window-control algorithm to

isolate a station that does not have the minimum contention parameter. Therefore, a broadcast phase must be added

to correct for this phenomenon. The next chapter compares the performance of the various window-control algo-

rithms through simulation, and discusses the implementation of a window-control algorithm in a real system in

which noise is a factor.
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4. SIMULATION AND ANALYSIS OF WINDOW-CONTROL PROTOCOLS

This section outlines simulation models for the binary exponential backoff algorithm and window-control

algorithms and uses the simulations to gauge the performance of the models under various conditions. It then uses

the results to present an implementation of a window-control algorithm in a real system in which noise is a factor.

The first simulations assume that the channel load is exactly known, that noise is independent for each contention

slot and that windows remain synchronized. They are used primarily to show the general effect of noise on the vari-

ous algorithms. The next set of simulations shows what happens when the windows in the window-control algo-

rithms become asynchronized. The last simulations show the results of load estimation on the approximate greedy

window-control algorithm. All simulations were run on SUN 3/50 and SUN 3/260 workstations. The simulations

involving the original dynamic programming lookup table and the binary exponential backoff algorithm were writ-

ten in Fortran77, and all other simulations were written in C. The associated programs are included in the appen-

dices.

All the simulations were performed with a 95% confidence interval C, which is +_5% of the mean, computed

as follows [19]:

C = +- 1.96 x 4___-

In the equation above, Z is the total number of trials performed, and cr2 is the variance of the sample. In the simula-

tions, C was calculated arbitrarily alter every 800 trials. If C was in the interval +_[0.05 x mean ], then the simula-

tion was terminated, otherwise it was run again with another 800 trials. Consequently, Z was some multiple of 800.

All simulations considered noise probabilities ranging from 0 to 0.9. The asymptotic value for the probability

of noise is 1.0. When the probability of noise is 1.0, the algorithms can never terminate, and the number of conten-

tion slots to resolve contention is infinite.

4.1. Independent Noise, Synchronized Windows

All the following models assume that for each contention slot, all stations sense the same state of the network,

and noise is independently generated in each contention slot with a fixed probability. In the simulations, noise was

modelled by generating a random number during each contention slot. If that random number was less than the
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threshold of noise defined for a given simulation, then the network was treated as if it were in a state of collision,

regardless of whether or not there was an actual collision during that contention slot. The contention parameters

were chosen as uniformly distributed random numbers in the interval [0,1). Upon restart of the algorithm, the con-

tention parameters were regenerated to avoid infinite loops when the two smallest contention parameters differ by

less than 8. In all the protocols, the numtmr of stations contending in a given slot was counted and placed in h. If

there was noise or h > 1, then there was a collision. If h = 0, then the line was idle. Otherwise, if h = 1, then the

algorithm terminated successfully.

4.1.1. Binary Exponential Backoff Algorithm

Figure 4.1 illustrates the effects of noise on the binary exponential backoff algorithm for 10, 20, 30, 40 and 50

contending stations. Note how the performance degrades fairly evenly for probabilities of noise < 0.8, as the number

of stations is increased. This corresponds to the linear degradation in performance of the binary exponential backoff
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Figure 4.1. Binary Exponential Backoff Algorithm
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algorithm when noise is not present (Figure 2.2). Under the presence of most levels of noise, the binm'y exponential

backoff algorithm still degrades linearly as the number of stations, n, increases.

There seems to be an anomaly for the number of contention slots at 90% noise and 10 contending stations, but

this can be explained from the fact that the exponential backoff algorithm causes the mean waiting time between

successive transmissions to become greater for each retransmission. As the number of contention slots becomes

greater, there are more empty slots. Early in the algorithm, the probabilities of collision are much higher when n is

large than when n is small. However, at some point in the algorithm, the probability of no transmission is greater

when n is small than when n is large. Higher probabilities of noise tend to cause the number of contention slotsto

increase to the point where this is the case. Consequently, at very high probabilities of noise, the performance of

the algorithm when n is small may be worse than when n is large. Another consequence of this result is that noise

has a greater effect when n is small than when n is large. This can be seen from Figure 4.1 where the performance

curve is much steeper for n=10 than for n=50.

4.1.2. Binary-Divide Window-Control Algorithm

The first window-control simulation shows the effects of noise on the binary-divide window-control algo-

rithm. The simulation was written in C and simulated on a SUN 3/260. The algorithm was restarted if contention

was not resolved when 8 < 1/(10n).

Figure 4.2 shows the various performance curves for I0, 20, 30, 40 and 50 contending stations. Note that the

performance degrades logarithmically as the probability of noise increases. The performance also degrades as the

number of stations increases, but nonlinearly, unlike the binary exponential backoff algorithm.

4.1.3. Original Dynamic Programming Window-Control Algorithm

The dynamic window-control simulations were written in Fortran and simulated on a SUN 3/50, using the

dynamic programming method with lookup table as outlined in Chapter 2. The dynamic programming algorithm

was truncated when the window size, St, became less then 1/(10n) as in Wah and Juang's model [13]. If the win-

dow size became smaller than 8x, a binary-divide algorithm was used to complete the iterations. The binary-divide
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algorithm was terminated at _52, at which point the algorithm was restarted if a minimum had not been identified.

The total resolution was therefore: 51 "_ = _/(10n).

Figure 4.3 shows the results of varying 52 for n=10 stations. (If _52=I, then the binary-divide phase is skipped

altogether, and the algorithm is restarted when _51 is reached.) As 52 decreases, more iterations are wasted before

the algorithm can be restarted after an error due to noise. For higher probabilities of noise, the probability of failure

increases and the number of restarts increases. The net effect is that decreasing 52 causes an increase in the number

of contention slots that becomes more pronounced as the probability of noise increases.

Figure 4.4 shows the various performance curves of n= 10, 20 and 30 when 52=1. Note that the number of

contentions is relatively independent of n, unlike the binary cxponcnti:fl backoff and binary-divide window-control

algorithms.
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4.1.4. Two-Phase Window-Control Algorithm

The two-phase model is the same as the one outlined in Chapter 3. It use.d file same lookup table as the

dynamic programming algorithm, was written in Fortran, and was simulated on a SUN 3/50.

Figure 4.5 illustrates the effects of varying 52 for the two-phase model when n =10. Note that for low proba-

bilities of noise (D -< 0.3), the performance is about the same as the original algorithm, but for high probabilities of

noise the performance degrades much more rapidly than the original algorithm as 82 is increased. This is due to the

fact that for low probabilities of noise, the two-phase algorithm has a higher probability of correcting ikself when the

contention p_u-ameters get outside the window. However, at higher probabilities of noise, the probability to corcect

this problem is much smaller, and it is more efficient to just restart the algorithm. The effects of noise on the two-

phase protocol are much more extreme when 82 is small, as can be seen by the steeper performance curves.

Nevertheless, the performance of the two-phase algorithm is relatively independent of n, as illustrated in Fig-

ure 4.6. The algorithm is simulated for 52=1 and n = I0, 20 and 30, and the performance is very similar to that of

the original algorithm.

4.1.5. Approximate Recurrence Relation

Chapter 3 developed an approximate recurrence relation (Equation 3.17) to minimize the number of conten-

tion slots to resolve contention with the probability of noise added as a parameter. This algorithm was written in C

and simulated on a SUN 3/260 with floating point accelerator. No binary phase was used, implying &z=l as in the

other window-control algorithms.

The approximate recurrence relation estimates that the probability that b is a true upper bound is equal to the

probability of noise in a contention slot, l-p. Letpl be the probability that b is a true upper bound. In Equation

(3.7), Pr(Ql) = pt and Pr(Q2) = (1-pt). It turns out that pt = 1 -p is not a good approximation, since b may be a

false upper bound due to previous false collisions. A much better heuristic approximation can be made by assuming

a smaller probability that b is true, such as p i = (I-P) 2.

Table 4.1 contains a comparison of the theoretical and simulated performance of the approximate recurrence

equation for both values of p 1. The theoretical performance is the expected number of contention slots to resolve

contention as calcukltcd by the approximate recurrence equation. During calculation, the optimal window for each
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pairof lowerandupperwindowboundarieswitscomputedandstoredinatable.Thesimulatedperformanceisthe

actualperformanceof thenetworkwhenusingthesewindows.Thecorrelationbetweenthesimulatedandtheoreti-

calperformanceis dependentontheaccuracyof theapproximation.In Table4.1,thesimulatedperformanceis

muchclosertothetheoreticalperformancewhenP t is approximated by (l-p) 2. The overall performance is also

improved by using p i = (l-P) 2-

It is possible to obtain even further improvements by developing an even more accurate approximation of p:.

Such an approximation should yield a better overall performance and simulated values that are even closer to the

Table 4.1. Comparison of the Performance of the Approximate Recurrence
Equation for Various p ] 's.

Dynamic Programming Algorithm (n=10)

p = probability of noise during contention slot,

P 1 = estimated probability that b is a true upper bound

Probability

of Noise

0
0.1
0.2

0.3
0.4

0.5
0.6
0.7

0.8
0.9

Pt = 1-p

Theory
2.5

2.6
2.8
3.0

3.3
3.7

4.5
5.8
8.4

16.5

P 1 = (l-P) 2
I

Simulation Theory
2.4 2.5
2.9 2.7

3.4 2.9
4.0 3.3
4.9 3.9

6.0 4.8
8.0 6.2

11.4 8.6
16.7 13.5
36.5 28.5

Simulation

2.4

2.8
3.2
4.0

4.8
6.0

7.3
9.6

15.1

28.5

Table 4.2. Comparison of the Performance of the Approximate Recurrence
Equation for Various n's

Probability

of Noise

0

0.1
0.2
0.3

0.4
0.5

0.6
0.7
0.8

0.9

Dynamic Programming

Theory
2.6
2.8
3.0

3.4
4.0

4.9
6.3
8.9

13.8

29.2

n=20

Simulation

2.5
3.0

3.3
3.9

4.8
6.2
7.6

9.5
15.1
29.6

Algorithm
n=30

I

Theory Simulation
2.6 2.5
2.8 2.9

3.0 3.4
3.4 3.9
4.0 4.9

4.9 6.3
6.4 7.7
8.9 9.9

14.0 15.0
29.4 30.2
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theoreticalvalues.Suchdevelopmentsareleftto futureresearch.At anyrate,bothapproximationsperformbetter

thantheoriginaldynamicprogrammingalgorithm,whichdoesnotaccountfornoise.

Theperformanceof theapproximaterecurrencerelationisalsorelativelyindependentof thenumberof sta-

tions,similarto theotherwindow-controlalgorithms.Table4.2comparesthesimulatedexpectednumberof con-

tentionslotsof n=20,30 and p I = (I-P) 2, under various probabilities of noise; (n=10 is shown in Table 4.1).

There is one drawback to the approximate recurrence relation-- the time required to create the lookup table.

Table 4.3 compares the time to create the lookup tables for the simulations. The long computation time prohibits

simulation of higher values of n.

4.1.6. Comparison of Algorithms

Figure 4.7 contains a comparison of all the algorithms for n=20 and _z=l. For low levels of noise, all

window-control algorithms perform better than the binary exponential backoff algorithm. For higher levels of

noise, most window-control methods, except binary-divide, still perform better than the binary exponential backoff

algorithm. All algorithms suffer from a logarithmic degradation in performance as the probability of noise

increases.

Several interesting observations can be made by comparing the performance of the window-control algo-

rithms. As expected, the pure binary-divide algorithm has the worst performance. However, the performances of

the original dynamic programming algorithm and two-phase algorithm are almost identical when 82 = I. The

approximate recurrence equation has the best performance for all levels of noise. The improvements gained are

most pronounced at higher levels of noise. Therefore, it is worthwhile to include noise as a parameter in the forma-

tion of the recurrence equation.

Table 4.3. Time to Create Lookup Table for Simulation of Approximate
Recurrence Equation

Time to Compute Lookup Table for Approximate
Recurrence Equation (in minutes)

n= 10 n=20 I n=30 n--40

9.9 81.0 ] 280.4 456.8
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4.2.AsynchronizedWindows

Thissectionlooksattheeffectsofnoisewhenit causesindividualstationstodetectdifferentstatesof thenet-

work.In theworstcase,eachstationmayhaveanoisylinktothenetworkwithagivenprobabilityof noisethatis

independentfromthatofotherlinks.Thesimulationmodelsthetwo-phasealgorithmwith81= 1/(10n)and52=0.1.

It comparesthecasewhereall stationsdetectallnoiseforn=10,tothecasewhereallstationshaveindependentbut

equalprobabilitiesof detectingnoiseforn=10,20and30.

In thesimulation,restartswereallowedonlyuponthedetectionof anidleline,asoutlinedinSection3.3.2.

Tokeeptrackof thetrueminimum,contentionparameterswerenotregeneratedduringarestart.Toguaranteethat

eachcontentionparameterdifferedbyat least6= 52"51= 1/(100n),thecontentionparametersweremodifiedby

includingeachstation'suniqueidentificationnumber.Theidentificationnumberwasaninteger,I, in the interval

[0,n). Contention parameters were formed by selecting a random integer in the interval [0,100), and by adding to it

I/n. The contention parameter was scaled to the range [03) by dividing the result by 100. Figure 4.8 illustrates the

effects of noise on isolating a station (not necessarily the minimum), when the windows remain synchronized and

when the windows become asynchronized.

It is interesting that the performance for the asynchronized windows is better than the performance for syn-

chronized windows. This becomes more evident at higher levels of noise, but should not be surprising due to the

operation of the two-phase protocol. If the proper minimum is not isolated due to noise, some other contention

parameter may lie within its designated window and just happen to be the only one transmitting. Some stations may

reduce their windows faster than others and be able to restart the algorithm sooner or some stations may lag behind

and still happen to be within the window bounds. Either of these cases opens up greater possibilities of isolating a

station more quickly when noise is significant.

The window-control algorithm can be used just as a means for resolving contention without finding the

minimum. In such cases, it has the same function as the binary exponential backoff algorithm. Since the perfor-

mance of the window-control algorithm for isolating stations is improved when the windows become out of phase,

the same arguments hold concerning the superiority of the window-control algorithms to the binary exponential

backoff algorithm.
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Table4.4showsthepercentof trueminimumsidentifiedattheterminationof thealgorithm.Note that the

percent of true minimums decreases as n is increased. This decrease is more pronounced at higher probabilities of

noise. To find the true minimum, the algorithm would have to be restarted after the broadcast phase with modified

initial window boundaries, as outlined in Section 3.3.2. As a result, the number of contention slots to resolve con-

tention would actually be greater than the number shown in Figure 4.8. One would also have to add in the time to

complete the broadcast phase for each restart. Therefore, the time required to isolate the minimum may increase

dramatically if the windows become out of phase.

One should note that in reality, it is very unlikely that all stations on the network will sense the network dif-

ferently. Instead, it is more likely that one or two stations or groups of stations may detect noise differently than the

others. As a result, the percent of true minimums in Table 4.4 and the performance curves of the independent sta-

tions in Figure 4.8 are lower bounds.
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Table 4.4. Percent of True Minimums

Independent Stations

Probability

of Noise

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

% true minimums

n=10
100
94.1
85.2
80.1
72.6
68.5
61.0
55.6
51.5
50.1

n=20
I00
93.9
86.4
81.9
70.9
64.9
57.7
49.7
43.3
41.1

n=30
100
93.6
86.1
77.7
70.3
62.9
54.6
45.6
39.4
35.6

4.3. Load Estimation

This section simulates the effects of noise on load estimation. The number of contending stations was

estimated by a moving average of previous windows using Equations (2.12) and (2.13). These load estimating

equations were used in the approximate greedy window-control outlined in Chapter 2. The approximate greedy

window-control algorithm was chosen because it was the simplest of the load dependent window-control algorithms

to simulate. The simulation assumed that there were 100 stations in the system. Since contention only occurred

when there were two or more contending stations, the estimated value of n was constrained to the interval, [2,100].

The simulation was written in C and performed on a SUN 3/260. As in previous simulations, n was the number of

contending stations, and 51= 1/(10n).

Figure 4.9 illustrates the effects of noise on the approximate greedy window-control algorithm with load esti-

mation. In all cases, the performance when the channel load is estimated is worse than when the load is exactly

known. The performance is much worse for smaller values of n, especially when the probability of noise is high.

This problem is due to the fact that false collisions may cause the minimum contention parameter to be isolated by a

window with an upper bound smaller than that which is actually needed. The net result is that the network appears

to be more heavily loaded than it actually is. Consequently, noise has a greater effect on load estimation when n is

small.
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Figure 4.9. Approximate Greedy Window-Control with Load Estimation

(n=10,30,50, 81=(10n) -l, 52=1)

One possibility to correct for this phenomenon is to include a scaling factor into the load estimation formula,

n,(t), based on some function of the probability of noise. A heuristic approximation to this scaling factor based on

'the observation of n, (t) for various probabilities of noise is (I-p)/0.8. Figure 4.10 illustrates the performance when

n,(t) is multiplied by (I-p)/0.8 for 10, 30 and 50 stations. Note that the performances of the estimated and known

channel loads are much closer.

Better approximations to the scaling factor for load estimation can be made by a more detailed analysis of the

problem. This is left to future research. Nevertheless, the approximation presented in this section shows that it is

possible to correct for the errors caused by noise in load estimation.
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Figure4.11illustratestheperformanceof variousbuscontentionalgorithmswithloadestimationforn=20.

Modifications were made for the dynamic programming algorithm and approximate recurrence relation because of

the large amount of time required to create the lookup tables. Consequently, tables were only created for n equal to

multiples of five between five and fifty inclusive. The scaling factor in the load estimation equation was not used

for the approximate recurrence relation, since better performance was obtained by omitting it. The scaling factor is

not as critical to the performance of the approximate recurrence relation, since choice of the windows is dependent

on noise, unlike the other window-control algorithms. As a result, the window used to isolate the minimum can be

used to determine the load of the network more accurately in the approximate recurrence relation than in the other

algorithms.

Note that the load dependent window-control algorithms have a worse performance than the performance

obtained when the load is exactly known, which can be seen by comparing Figure 4.7 to Figure 4.11. Nevertheless,

the performance of the window-control algorithms is still better than the exponential backoff algorithm for most lev-

els of noise. Also, the performance of the approximate recurrence relation is better than the performance of the

other bus contention algorithms in the presence of noise, even when the load is estimated.

4.4. Implementation of a Window-Control Algorithm on Ethernet in the Presence of Noise

Implementation of a window-control algorithm on a 10-Mbit/s Ethernet network is restricted by the stringent

real-time requirement that each contention slot has a duration of less than 60 ItS [16]. The only algorithm that can

be computed quickly enough in real time to satisfy this time requirement is the binary-divide algorithm. The

approximate greedy window-control algorithm may be used if a lookup table is employed to compute the square

root [13]. To use any of the other window-control algorithms, the sequence of windows would have to be precom-

puted and stored in a lookup table.

Because of its superior performance for all probabilities of noise, the approximate recurrence relation ought to

be used in implementations where noise is a significant factor. Chapter 3 discussed how the sequence of windows

could be stored on an MCS 8396 using a four-level binary decision tree with each (n,p) pair requiring 0.03 Kbytes

of memory. One practical arrangement is to let n range from 5 to 100 by 5's, and let p range from 0 to 0.9 by 0. I.

The required memory would then be 6 Kbytes, which can fit on the MCS 8396. Interpolation could be used for
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intermediate values of n and p. Nevertheless, the one drawback to this method is the enormous an_ount of time

required to create the lookup tables.

In situations where the probability of noise is low, (p < 0.3), the original dynamic programming algorithm has

a performance that is almost as good as the approximate recurrence relation. The advantage of the dynamic pro-

gramming algorithm is that only one table is required for each n. Consequently, the intermediate values of n may

also fit into the ROM of the MCS 8396. Furthermore, the computation time to create the tables in the original

dynamic programming algorithm is about 1/4 the time required to create each table in the approximate recurrence

relation with the same n. As a result, one might want to consider using the original dynamic programming algo-

rithm if the probability of noise in the system is low most of the time.

In order to get the maximum benefit from the window-control algorithms, the channel load has to be estimated

as accurately as possible, and the probability of noise has to be estimated for the approximate recurrence relation.

The channel load can be estimated using the moving window technique with appropriate scaling to account for

noise. The probability of noise can be estimated by the contending stations from the percentage of errors in transmit-

ted messages. Coding theory techniques could be used to determine this value.

To guarantee that the window-control algorithm operates properly if the windows get out of phase, the

modifications of Section 3.3.2 should be included. The major modifications are that a broadcast phase must be

added to verify that the isolated station is the true minimum, and the algorithm should never be restarted unless the

contending station detects that the line is idle. The broadcast phase can be omitted for use in bus contention where it

is not necessary to isolate the minimum. Finally, the contending station should abort contention if it continues to

sense collision on the network after it has reduced its window size to 8 and the timeout period has expired.
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5. CONCLUSIONS

The main result of this study is that by making a few adjustments to the window-control protocols, they can

still be used to resolve bus contention when noise is present. One major adjustment is to include a termination con-

dition, 5, for when the window size becomes too small, and to restart the algorithm with the original window when

this occurs. Another adjustment is needed to account for the case where all stations do not detect the noise. In this

case, the window boundaries may become out of phase, and the wrong station may be isolated. A broadcast phase

must be added to verify that the proper station has been identified.

Another conclusion of this study is that the performance of most window-control algorithms in the presence

of noise is superior to the performance of the binary exponential backoff algorithm. The gain in performance is

greater at low probabilities of noise and high channel loads. Since normal operation of the network is likely to have

low probabilities of noise, the window-control algorithms are preferable to the binary exponential backoff algorithm

for resolving bus contention. Improvements to the dynamic programming algorithm outlined in Chapter 2 can be

made by including noise as a parameter in a recurrence equation. This study developed an approximate recurrence

relation that had superior performance to previously developed window-control algorithms in the presence of noise.

One drawback to the performance of the window-control algorithms is due to the effect of noise on load esti-

mation. These effects are greater when the number of contending stations is small and the probability of noise is

high, but can be corrected by adjusting the load estimation equation to account for noise.

Future research should investigate several of the issues discovered in this study. A good implementation of

the broadcast phase should be realized with minimum added cost to resolve bus contention. Also, one should

develop a better method for estimating the load of the system when noise is present. Additionally, one should inves-

tigate methods for estimating the probability of noise on the system for use in the approximate recurrence equation.

Previous discussion assumed that the stations were all synchronized initially and that they all began iterations

of the window-control algorithms at the same time. In actuality, some stations may begin iterations before the oth-

ers. Furthermore, their clocks might become skewed so that their contention slots overlap. Future work could be to

investigate the. problems of initializing the algorithms and synchronizing the clock._. In light of the study of asyn-
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chronizedwindows,it is verylikely thattheperformanceof thewindow-controlalgorithmswill continueto be

betterthanthatoftheexponentialbackoffmethod.
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APPENDIX A. SIMULATION PROGRAMS IN FORTRAN

C ************************* Fortran PrograJn.$ *****************************

c * binary exponential backoff, dynamic programming window-control,

c * two-phase, and two-phase with independent noise detection algorithms
c *********************************************************************

c

c Each program consists of a declaration of variables, Lookup Table Generation

c (except binary exponential backoff), Simulation, and Data Analysis.
c The Lookup Table Generation and Data Analysis are exactly the same for
c all programs, and are therefore, listed only once in detail.
c

C

c Note:

c Operation of all Fortran programs requires that the output from a
c random number generator be piped into the standard input. The random

c generator function is written in C and the executable file is called

c 'randgen'.
CCC C CC CCC CCCC CCCC CCCCCCCC CCCC CCC CCC CCC CCC CCCC.CC CCCCCCCCC-A_CCCCCCCCCC C¢C CCC C

C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC¢CCCCecCCCCC

C

c Dynamic Programming Window-Control

C

c 1. Compute optimal window size of the window protocol with continuous i.i.d.
c distributions :

c - using dynamic programming formulation

c - evaluation of dynamic programming is truncated when interval

c is less than 1.0 / (5 * no. of contending stations)

c - binary-divide window search is used after truncation point

c in dynamic programming algorid3m

c - algorithm is restarted if minimum has not been identified

c in binary-divide window search and window size is less than delta2

c
c 2. Evaluate the dynamic programming window search scheme by simulations
c - assume that the no. of contending stations is known

C

CecCCCCec CCCCC CCCCCCCC CCC CCC C CCCC CCCCC CecCCCCCCCCCCCCCCCC¢CecCCCCCCCCC CCCCC

c variables :

c n,nr : no. of contending stations
c dw : size of automic interval

c cn(400,400) : matrix to store intermediate window size and expected

c no. of contentions and the search tree

c tx(i) : contending parameter of station i

c tb(i) : contention parameter for binary phase of station i

c wb(30) : working space for histogram
crr: random number read in from standard input file

c vflag: specifies whether or not simulation is due to a new set of

c parameters or is just a continuation due to the 95% confidence

c interval not being satisfied
c ecc: confidence interval calculated from the variance and number of trials

c pfc: random number used to determine the probability of noise during a
e contention slot

c icount: total number of trials for a given simulation
c fctst: threshold of noise

c delta2: resolution of window size for binary phase

c la,lb: lower.upper bounds of window in dynamic programming phase

c a,b: lower,ul_pcr bounds of window in binary-divide phase
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w,lw:nextupperbounftofwindow

doubleprecisionrr
integern,la,lb,lw
realdw,tx(40),cn(400,400),tb(40)
reala,b,w
realru',jj,ccc,delta2
integerwb(30)
co rTh'TlOn ns,nr,dw

logical vflag
c

c file (cc.data) : store the evaluation results
c

open(unit=l,file='cc.data',status='new')

write(6,1200)

1200 format('+++++ window control using dynamic programming +++++',

L'+++++ continuous iid (discrete approximation) +++++')

write(6,1210)

1210 format('+++++ (dw = 1.0/r * no. of contending stations) +++++')
c

C

c

C CC CCCC C--CCCCC CCC COC CCC e cc ec, c c CCCC C_C cccc.c ccx_ ccc c CA_¢C ¢A_CC,CCCCCC.C CCC C CC C CC C

C

c Lookup Table Generation:

c iterate on no. of contending stations assuming there is no noise

c (This portion of the program was developed by J. Y. Juang [17] )
C

CCCCCCCcoCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

2000 do 7700 ns=lO,30,10

C

c initialize parameters

C

nr=float(ns)
do 7700 iter=lO, lO

n=ns*iter

dw=l.0/float(n)

do 3010 i=l,n

do 3010 j=i,n

3010 cn(i,j)=O.O
C

c i : lower bound of last window

c i+k : upper bound of last interval

c j : candidate of optimal window
C

c iterate on lower and upper bound of last window
c

do 4400 k=l,n-1

do 4400 i=l,n-k

wmin---9999.0

c exhaustive enumeration on all possible candidates of optimal window
do 4300 j=i,i+k- 1

call prob(i,j,i+k,pg,pl,pr)

tw--pl*cn(i,j)+pr*en(j+l,i+k)

if(tw .ge. wmin) goto 4300

kwin=j
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wmin=tw

4300 continue

cn(i,i+k)=l .O+wmin

cn(i +k,i)=float(kwin)

c write(l,4350) i,j,kwin,cn(i,i+k)
c4350 format('Iower bound : ',i3,' upper bound : ',i3,' window : ',

c . i3,' exp. contentions : ',f7.5)
4400 continue

c

c save evaluation results

C

c write(6,5100) ns,iter, cn(1 ,n)

c5100 format(H/+++++ no. of contending stations : ",i4,L

c .'+++++ resolution factor r (n = r * no. of station) :',i4,],

c '>>>>> ave. no. of contentions (analysis) : ',f9.3)

c write(6,5150)

c5150 format(H/<<<<< matrix of optimal windows >>>>>')

c do 5200 i=l,n

c write(6,5300) i

c do 5200 j=l,n/lO

e write(6,5400) (cn(i,k), k=lO*j-9,10*j)
c5200 continue

c5300 format(l,'--=== row ',i3,' ..... ')

c5400 format(lO(f9.5,1x))

C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(_C

c Simulation

C

C CCC CC C CCC CC,C C cccCC CCCCCC c cccccc C cc C CC CCCCCCC CCCCCC CCC CcccccccccCCCCCCC, CC

C

c format standard input tile
133 format(dl5.10)

c

c set window resolution for binary phase
delta2=l

C

7900 do 7710j=0,90,I0

jj=float(j)

fctst=jj*O.O1

npkt=800

vflag=.false.
8001 rewind 1

C

c initialize number of contention slots

C

8000 kstep---O
C

c generate contention p_rameters

C

8110 do 8100 i=lons

read(5,133) rr

tx(i)=rr
8100 continue

la=l

Ib=n

8500 kstep=kstep+l
c

c generate noise

C
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read(5,133) rr

pfc=rr
c

C contention resolutions

c

if(lb .eq. la) goto 8700

c if lb=la then go to the start of the binary phase, otherwise

c retrieve the discrete window value and convert it to integer
8590 w=cn(lb,la)

lw=ifix(w)

c convert to real window value
w=dw_w

C

c collision detections

C

8601 ntrx---O

do 8600 i=l ,ns

if(tx(i) .gt. w) goto 8600
ntrx=ntrx+l

8600 continue

c

c collision?

if (pfc .le. fctst .or. ntrx .gt. I) then
lb=lw

goto 8500
C success?

else

if ( ntrx .eq. 1) goto 9000
endif

c no transmission?

la=lw+l

goto 8500
c

c

C

c Binary Phase

C

8700 if (delta2 .eq. 1.0) then

kstep=kstep- 1
goto 8110

endif

c regenerate contention parameters for binary phase
w---dw* float(lb)
do 8720 i=l,ns

read(5,133) rr

if(tx(i) .gt. w) tb(i)=l.1

if(tx(i) .le. w) tb(i)=rr
8720 continue

c

c contention resolution using binary-divide algorithm
8730 a=0.0

b= 1.0

8800 w----0.5*(a+b)
Z=w-a

C

c restart evaluation if window has becomes too small.
C

if (z .le. delta2) goto 8110
C

c collision detection
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8621ntrx=O
do8820i=l,ns
if(tb(i).gt.w)goto8820
ntrx=ntrx+l

8820continue
C

c collision ?

if( pfc .le. fctst .or. ntrx .gt. 1) then
b=w

goto 8800
endif

C

c success ?

if (ntrx .eq. 1) goto 9000

c

c no transmission ?

amw

goto 8800

c

C

e contention resolved, collect data

C

9000 write(I,9100) kstep

9100 format(J5)

npkt--npkt-1
if(npkt .gt. O) goto 8000

C

CCCC CCCCCCCCC CCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCC CCCC CCCCC CEC C CCCCC

C

c Data Analysis

C

CCC CCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCC C CC CCC C CCC CC C CC C cccec

C

c initialize sum, variance and histogram to 0 for new simulations

c (e. g. not continuations due to failure to satisfy requirements
c for the 95% confidence interval)

C

if (.not. vflag) then
s---0.

v=0.

do 99 i=I,30

99 wb(i)=0
icount---0

endif

rewind 1

c calculate mean and store number of contention slots in appropriate wb(i)

100 read(l,110,end=199)ncp

110 format(iS)

s=s+float(nep)
icount=icount+l

inep=ncp

c histogram has bins for number of contention slots greater than 24

if (ncp .gt. 25 .and. nep .le. 50) incp=25

if (ncp .gt. 50 .and. nep .le. 100) incl--26

if (nep .gt. 100 .and. nep .le. 200) incp=27

if (ncp .gt. 200 .and. nc'p .le. 1000) incp=28

if (ncp .gt 1000 .and. ncp .le. 9999) inep=29

if (ncp .gt. 9999) incp=30

wb(incp)=wb(inep)+l

goto I00
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199 xmean=s/icount

c calculate variance

200 rewind 1

vload=O

210 read(1,110,end=3OO)ncp
v=v+(float(ncp)-xmcan)**2

goto 210

300 varian=v/icount

c calculate 95% confidence interval and run another 800 trials if necessary
con.f= 1.96*sqrt(v arian/icount)
rewind 1

c

c distribution of no. of contentions

C

write(6,500) icount

500 format('***** no. of packets transmitted : ',i5)
cc_O.05*xmean

if (conf .gt. ccc) then

npkt=800

vflag=.true.
rewind 1

goto 8001
endif

c print results

write(6,400) xmean,varian,conf

400 format(L'<<<<< ave. no. of contentions (simulation) : '
• ,fg.4J

'<<<<< variance of contention period : ',f9.2,
.'confidence= ',f9.4)

write(6,502)

502 format(//,'-- ncp --- frequency --- probability --- cum.--')
cum=O.

do 550 i=I,30

k=i

if (k .eq. 25) k=50

if(k .eq. 26) k=lO0

if (k .eq. 27) k=200

if(k .eq. 28) k=lO00

if (k .eq. 29) k--a999

if (k .eq. 30) k=5000

pr= float(wb(i))/icount

cum=cul/l +pr

if (k .IL 25) then

write(6,560)k,wb(i),pr, cum
else

write(6,561 )k, wb(i),pr, cum
endif

550 continue

560 format(2x,i4,7 x,i5,7x,f6.4,7x,f6.4)

561 format(x,'<',i4,7x,iS,7x,f6.4,Tx,f6.4)
C

write(6,570) j 1

write(6,580) j

570 format (//,'noise level= ',i5,'%')

580 format ('continued noise= 'i5,'%')
tm=etime(at, bt)

write.(6,601) tm,aLbt

601 format ('elapsed time=',3(flO.2,3x))
7710 continue

7700 continue
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stop
end

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

c subroutine for computing probability of collision, success, and idle

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C .

subroutine prob(n 1,nw,n2,pg,pl,pr)

real nr

common ns,nr, dw

pg=1.0

pl=0.0

pr=-0.0

if(nl .ge. n2-1) return

a=dw* float(nl-1)

b=dw*float(n2)

w=dw* float(nw)

x=ru'*(w-a)*((1.0-w)**(ns-1) - (1.0-b)**(ns-1))

y=(1.0-a)**ns - (1.0-b)**ns - nr*(b-a)*(1.0-b)**(ns-l)

z=( 1.0-w)* *ns - (1.0-b)**ns - nr*Co-w)*( 1.0-b)**(ns- 1)

if (y .le. 0.0) return

pg=x/y

pr=-z/y

pl= 1.0-pg-pr
retum

end

C CC C CCC CCCCECCCCCCC C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCC CCC CC C CCC_C

c end of Dynamic Programming Algorithra

ccccccccccccccccccccccecccccccccccccccccceccccccccccccccccccccccccccccccc

C

C

C

C

C

C

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Two-Phase Algorithm
c

c The two-phase algorithm is exactly the same as the original dynamic

c programming algorithm except for the method by which windows are

c updated after an idle contention slot is detected.
c After an idle contention slot, the lower bound of the window, a, is

c raised to the value, w; the upper bound of the window, b, is raised

c to the value of the upper bound from the previous contention slot.

C

CCC C CC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCr-A_CCCCCC CCCCCCCCCCC CCC C _C C _CC

C

c New variables(variablesfrom dynamic programming algorithmareretained):

c kdeep= level of iterations within dynamic programming part of algorithm
c bdeep= level of iterations within binary divide algorithm

c kw0,bw0= arrays that store previous upper bounds for backtracking

c within the dynamic prog. alg. and the binary alg.

C

real kw(l 0),bw(20)
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integerkdeep,bdeep
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
cincludeLookupTableGenerationhere
¢

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c Simulation

C

Ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

C

c generate contending parameters
c

de]ta2=l.O

133 format(d 15,1 O)

7900 do 7710j=70,90,20

vflag=.false.

jj=float(j)

fctst=jj*O.O1

npkt=800
8001 rewind 1

C

c contention resolutions
C

8000 kstep=O
8555 ta=l

Ib=n

kdeep=l

kw(kdeep)---n

w=cnOb,la)
C

c generate contention parameters
c

8500 do 8100 i=l,ns

read(5,133) rr

tx(i)=rr
8100 continue

c

c generate noise
c

read(5,133) rr

pfc=rr
C

kstep=kstep+l

if(lb .eq. la) goto 8700

c if Ib=la, then go to the start of the binary phase
8601 ntrx--O

lw=ifix(w)

c convert to real window value
w-__.dw_,w

c

e collision detections

C

do 8600 i=l,ns

if(tx(i) .gt. w) goto 8600
ntrx=ntrx+l

8600 continue

C

c collision?

if (pfc .le. fctst .or. ntrx .gt. I) then

if (kdcep .eq. 30) goto 8500
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kdeep=kdeep+l

kw(kdeep)=lw
lb=lw

w=en(lb,La)

goto 8500
c success?

else

if( ntrx .eq. 1) then

goto 9000
endif

endif

c no transmission?

la=lw+l

lb=kw(kdeep)
w=lb

if (kdeep .gt. 1) kdeep=kdeep-1

if (lb .It. la) Ib=la

goto 8500
C

c Start of Binary Phase
c

8700 if (delta2 .eq. 1) then

kstep=kstep- 1

goto 8555
endif

C

c regenerating contending parameters
c

w---dw*float(lb)

bdeep=l

bw(bdeep)= 1.0
do 8720 i=l,ns

read(5,133) rr

if(tx(i) .gt. w) tb(i)=l.1

if(tx(i) .le. w) tb(i)=rr
8720 continue

C

c contention resolution using binary-divide algoirthm
8730 a=O.O

b=l.0

w----0.5*(a+b)

8800 z=w-a

C

c restart evaluation if window has become too small.

if (z .le. delta2) then
lb--n

la=l

kdeep= 1
kw(kdeep_n
w=cn(la, lb)
•_v-_.dw_ w

goto 8555
endif

C

c collision detection

8621 ntrx=0

do 8820 i=l,ns
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if(tb(i) .gt. w) goto 8820
ntrx=ntrx+l

8820 continue

c

c collision ?

if( pfc ,le, fctst .or. ntrx .gt. 1) then
b=w

bdeep=bdeep+ 1

bw(bdeep)=b

w=0.5*(a+b)

goto 8800
endif

C

C success 9

if (ntrx .eq. 1) then

goto 9000
endif

C

c no transmission ?

c

if (bdeep .eq. 0) then
la=la+l

if (kdeep .gt. 1)kdeep=kdeep-1
lb=kw(kdeep)

if (lb .It. la) Ib=la

goto 8500
else

a=w

b=bw(bdeep)
w=b

bdeep=bdeep-I
endif

goto 8800
C

c contention resolved, collect data
C

9000 write(i,9100) kstep
9100 format(i5)

npkt=npkt- 1

if(npkt .gt. 0) goto 8000
c

Cec CCCCCC C CCCC CCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCC C ccccc
C

c include Data Analysis here
C

CCCCCC C CCC CCCCCCCCCC CC CCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCC CCC C CCCCC
C

c include subroutine for computing
c probability of collision, success, and idle here
c

ccccccccccccccccccccccccccccccceccccccccccccccccccccccccccccccccccccccccc
c end of Two-Phase Algorithm

ccccccccccccccccccc cccccccccccccccceccccccccccccccccccccccccccccccccccccc
C

C

C

C

C

cccccccccccccccccccccccccccccccccccecccccecccccccccccccccccccccccccccccccc

c Two-Phase Algorithm with l.ndcpcndentNoise Dctection
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C

c This program uses the same protocol as the two-phase algorithm

c except that the noise is detected independently for ezlch station.

c Consequently, arrays were set up to keep track of all the necessary

c information (such as window boundaries) for each station.

c The resolution of the dynamic programming lookup table is 1/10n,

c and the resolution of the binary window size in the binary-divide

c phase is 1/10. This leads to a net resolution of 1/100n.

C

CCCCCCCCCCCCCCGCeCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c

c All variables are the same as those used in the two-phase algorithm,

c except the following variables were converted to arrays:

c la, w,lb: la(40),w(40),lb(40)

c a,b: la2(40),lb2(40)

c kdeep,bdeep: kkdeep(40),bbdeep(40)
e kw(10),bw(20): kw(40,10),bw(40,20)

c pfc: pfc(40)

C

c The following new variables were added:

c mintx: station with minimum contention parameter

c newtx: station isolated by two-phase algorithm
c truecnt: number of true minimums at end of simulation

c wait(40): used to keep track of which stations are in wait state
c Wait state is entered when the window size becomes less

c than 1/100n.

c binary(40): used to keep track of which stations are in binary-divide

e phase
c done: flag to denote that some station has transmitted successfully

c

integer mintx,newtx, truecnt

logical binary(40),wait(40),done
ccccccccccccccecccccecccccccccccecccccccccccccccccccccccccccccccccccccccc

C

c include Lookup Table Generation here

C

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Simulation

C

CCCCCCCCCC CCCCCC CCCCCCCCCCCCCCCCCCC CCC CecC CCC CC CecCC CC C CC C CCCCCCCCCCC C CCC

C

c generate contending parameters

C

133 format(dl5.10)

7900 do 7710j=0,90,I0

vflag=.false.
jj=float(j)

fctst=ii*0.01
truecnt=0

npkt=800
8001 rewind 1

c generate contention parameters for first set of stations
8000 mintx= 1

do 8100 i=l,rts

read(5,133) rr

nl=int(100*rr)

n2=(i-l.O)l(rtr+O.O)

tx(i)=(nl+n2)/100

e setmintx to minimum ofcontending parameters

if(tx(i).It.tx(mintx))mintx=i
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8100 continue

c initialize contention for First set of stations

kstep=O

6000 do 6003 i= 1,ns

kw(i,1)=n

la(i)=l

lb(i)=cn(n,1)

kkdeep(i)=2

kw(i,kkdeep(i))=lb(i)

binary(i)=.false.

wait(i)=.faIse.
done=.false.

la2_i)=O

lb2(i)=1
6003 continue

C

C

6010 ntrx=O

c generate noise + transmissions

c include line 6011 here instead of where it is now for synchronous
c noise detection

do 6013 i=l,ns

6011 read(5,133) rr

w(i)---dw*lb(i)

if (.not. wait(i)) then

if (binary(i)) then

if (tb(i) .le. lb2(i)) ntrx=ntrx+l
else

if (tx(i) .le. w(i) ) ntrx=ntrx+l
endif

endif

pfc(i)--rr
6013 continue

"C

C

e analyze state of system for each station

c and adjust window accordingly
C

do 6023 i=l,ns

if (wait(i)) goto 6200

c goto start of wait state
if(lb(i) .le. la(i) ) goto 6100

c goto start of binary phase
e collision?

if (pfc(i) .le. fctst .or. nb'x .gt. 1) then

llb=lb(i)

lla=la(i)

w(i)=cn(llb,lla)

lw=Lfix(w(i))

w(i)=dw*w(i)

kkdcep(i)=k.kdeep(i) +1

kw(i,kkdcep(i))=lw

lb(i)=lw

6083 goto 6023
endif

c success?

if (nb'x .eq. 1) then

if (tx(i) .le. w(i) ) then
done=._'ue.
newtx=i
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else
tx(i)=l.1

endif
goto6023

endif
cnotransmission?

la(i)=lb(i)+l
if (kkdeep(i).gt.1)kkdeep(i)=kkdeep(i)-I
lb(i)=kw(i,kkdeep(i))

goto6023
c
cstartofbinaryphase
c
61O0if (.not.binary(i))then
c initializeifnecessary

binary(i)=.true.
bbdeep(i)=I
lb2(i)=w(i)
la2(i)=w(i)-dw
bw(i,bbdeep(i))=Ib2(i)
if (tx(i).gt.w(i))then

tb(i)=l.1
else

tb(i)=tx(i)
endif

endif
ccollision?

if (pfc(i).le.fctst.or.ntrx.gt.I) then
lb2(i)---O.5*(la2(i)+Ib2(i))
bbdeep(i)=bbdeep(i)+1
bw(i,bbdeep(i))--lb2(i)

6183 goto6500
endif

csuccess?
if (ntrx.eq.1)then

if (tb(i).le.Ib2(i))then
done=.true.
newtx=i

else
tx(i)=l.1

endif
goto6500

endif
c no transmission?

if (bbdeep(i) .eq. 1) then

binary(i)=.false.

la(i)=la(i)+l

if (kkdeep(i) .gt. 1) kkdeep(i)=kkdeep(i)-I

Ib(i)=kw(i3,kdeep(i))

else

bbdeep(i)=bbdeep(i)- 1

la2(i)=lb2(i)

lb2(i)=bw(i,bbde, ep(i))
endif

6500 if ((lb2(i)-la2(i)) .It. 1.O/(200*ns)) then
c enter wait state if window is too small

lb(i)=cn(n, 1)

la(i)=l

binary(i)=.false.

kkdeep(i)=2
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kw(i,kkdeep(i))=lb(i)
wait(i)=.true.
endif

goto 6023
c

c start of wait state

C

6200 if (pfc(i) .gt. fctst .and. ntrx .eq. 1) then
tx(i)=l.1

else

ff (pfc(i) .gL fctst .and. ntrx .cq. 0) wait(i)=.false.
endif

c

6023 continue

kstep=kstep+1

if ( .not. done .and. kstep .le. 10000) goto 6010

if (mintx .eq. newtx) truecnt=truccnt+l

9000 write(I,9100) kstep

9100 format(i5)

npkt=npkt- 1

if (npkt .gt. 0) goto 8000
C

ccccccccccecccccccccccccccccccecccccccccccccecccccccccccc ccccccccceccccc

c

c include Data Analysis here (plus the following lines)
C

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
write(6,580) truecnt

580 format ('number of true minimums= ',i.5)

CCCCCCCCCCCOCCC_CCCCCCecccccccccccccccccccccccccccccccccccccccccccccccccc

C

c include subroutine for computing

c probability of collision, success, and idle here
c

ccccceccecccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c end of Two-Phase Algorithm with Independent Noise Detection

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC_C CCCCCCCCCCCCCCCC CCCCCCCCCCCCC

C

C

C

C

C

CCCCCCCCCCCC(;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC_C_CC_CC

c Binary Exponential Backoff Algorithm
C

c This program simulates the exponential backoff algorithm of an ethemet
c network in the presence of noise.
c ns=#of stations

c slot(i)--next slot that station i will attempt to transmit

c doub(i)---number of transmission attempts station i has made

c (new wait tim_ (rand#)* 2**doub(i) if i<=10

c or 1024 (2"'10) if i>10 )

c (station i drops out of contention if i=16)

c kstep=number of contention slots to resolve conflict

c keount=number of stations transmitting in a given contention slot

c npkt--number of runs per simulation

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCC
C

c

double precision rr
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integerns,npkt
integerslot(60),doub(60)
integerwb(30),wj,wj1
logicalvllag

C

C

c initialization simulation

c

133 format(dl5.10)

write(6,51 I0)

5110 format('Ethemet Exp Backoff Model')

do 7720 ns=10,10

write(6,5100) ns
5100 format(///.'number of contending stations:'.i5)

do 7700 j--O,90,10

vflag=.false.

fctst=float(j)/100.0

npkt=800

8001 rewind 1

2000 kstep=O
c initialize noise for the first slot and the next slot that

c a station may transmit if it detects a collision

read(5,133) rr

do 1001 i=l,ns

doub(i)=l

read(5,133) rr

slot(i)=2.0*rr+l

I001 continue

c
c count the number of transmissions in the current slot

C

10(30 kcount--O

kstep=kstep+l
do 2001 i=l,ns

if (slot(i) .eq. kstep) then
kcount=kcount+l

doub(i)--_:loub(i)+l

if (doub(i) .gt. 16) then
slot(i)--O

goto 2500
' endif

C

c determine next slot that station will transmit if collision is detected

C

read(5,133) rr

if (doub(i) .le. 10) then

slot(i)= 2**doub(i)*n" +1 +slot(i)
else

slot(i)= 1024*rr +1 -_slot(i)

endif

c write (6.999) kstep,i,slot(i)

c999 format(iS,4x.iS,4x,iS)

endif

2001 continue

2500 if (kstep .gt. 5000) goto 9000

C

c add noise

C

read(5,133) rr

pfc--rr
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c If there is a collision (kcount>l or noise) or no tranmission (kcount=0)
c then repeat above procedure for the next contention slot.
c If there is a successful transmission, terminate contention.

if (pfc .le. fctst) kcount=2
if (kcount .ne. 1) goto 1000

C

c write(6,998) kstep
c998 form at(//, 'ks tep= ',i5)
c

9000 write(I,9100) kstep
9100. format(J5)
5000 npkt=npkt-1

if (npkt .gt. 0) goto 2000
C

cccccccccccccccccccccccccccccc(2ccccccccccccccccccccccccccccccccccccccccc

C

c include Data Analysis here
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCC

c end of Binary Exponential Backoff Algorithm
CccCCCCCCCCCCCCCCccCCCCCCCCCCC¢CCCCCCCCC¢CccCCCCCCCCC¢CCCCCCCCCCCCCCCCcc

/* This program generates a continuous stream of random numbers
* and is written in C. The corresponding executable file is
* called 'randgen'. The output from randgen must be piped
* into the standard input of all Fortran programs in this Appendix.
* (The random number had to be written in C, because the standard
* random number generator in the Fortran library cycled after a
* certain point.) */

#include <stdio.h>

main()
{

int i;
double z;
stand(1 );
for (;;)

{
z= rand0[2147483648.0;
printf("%5.10f0,z);
)

} /* end of random number generator */
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APPENDIX B. SIMULATION PROGRAMS IN C

*************************************************************************

* C programs

* includes the programs for the approximate recurrence relation,

* binary-divide algorithm, greedy approximate window-control,

* and load estimation
************************************************************************

#include <stdio.h>

#include <math.h>

#include <sys/types.h>

#include <sys/umes.h>

#define NMAX 799/*number of trials in a given run */
.

* Approximate Recurrence Relation:
* -create a lookup table from the recurrence relation outlined in
* section 3.3.1.3

* -simulate contention using the lookup table

* The lookup table has a resolution of ll(10n), and the algorithm

* is restarted with new contention parameters if contention is not
* resolved when the window size is less than 1/(10n).

*************************************************************************

* global variables:
lit

*************************************************************************

float Nx[401][401];/* lookup table for computing N(a,b)
For current window [a,b), Nx[a][b] contains the

expected minimum number of contention slots to
resolve contention. Nx[bl[a] contains the

optimal window for interval [a,b).
Nx[b][a] is shared by both subroutines:
NO and S0. */

float Sx[401][401]; i'* lookup table for computing S(a,b)

For current window [a,b), Sx[a][b] is the estimated

probability of success and Sx[b][a]=Nx[b][a]. */

double p, /* probability of noise */

dw; /* window resolution-- 1/(10n) */

hat n; /* number of initial contending stations */

* subroutines

I'* prob0, return random # Uniform[0,1)
*/

double

prob0

{
static double divis = 2147483648.0:



doublcy;

y=r,'mdO;
return(y/divis);
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double

g2(a,w,b)/* compute g in dynamic programming formulation */
doublc w,a,b;
{

doublc powO,x,y,zl,z2,z,pl;

/* compute g2 assuming false collision-- b invalid */
pl =(I .O-p)* (1 .O-p);

x=n*(w-a)*pow((l.O-w),(n_l.O))*(1.O_p);
if (a < 1.0)

{
y=pow((1.O-a),(n-O.O));

zl=x/y;
}

else

zl=O.O;

/* compute g2 assuming true collision -- b valid */

x=n*(w-a)*(pow((1.0-w),(n-1.O))-pow((1.O-b),(n-1.0)));
if(a< 1.0)

{

y=pow((1.0-a),(n-O.O))-n* (b-a)*pow((1.O-b),(n- l.O))-pow((1.O.b),(n.O.O));
z2=x/y;
}

else

z2=O.O;

/* compute z */

z=(1.O-pl)*zl + pl*z.2;

return(z);
}

double

t:2(a,w,b)/* compute r ha dynamic programming formulation */
double w,a,b;

/
double powO,x,y,z, zl,z2,p I ;

/* compute r2 assuming false collision-- b invalid */

pl=(1.O-p)*(l.O-p);
if (a < 1.0)

{
x=(1 .O-w)/(1 .O-a);

y=n+O.O;

zl--pow(x,y)*(1 .O-p);
I

else

zl---O.O;

/'* compute r2 assuming true collision-- b valid */
if(a < 1.0)

{

x=pow((1.0-w),(rt-O.O))-n* (b-w)*pow((1.0-b),(n-1.0))-pow((1.0-b),(n-O.O));

y=pow((1.0-a),(n-O.O))-n* (b-a)*pow((1.0-b),(n- l.O))-pow((1.O-b),(n-O.O));
z2=x/y;
}

else
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z2=0.0;

/* compute z */

z=(1.0-pl)*zl + pl*z2;

return(z);

double

N(a,b)/* Compute the estimated minimum number of contention slots to resolve

contention given the current window [a,b). N0 is dependent
on minimizing the term N0/S0 for smaller subwindows.

The terms N0 and S0 are computed recursively until (b-a)<l,

at which point the following boundary conditions are used:

N(a,b)=l, S(a,b)=g(a,b).

*/

int a,b;/* a = lower bound; b = upper bound */

{
double N0,S0,g20,r20;

double aa,ww,bb, wtest,ntest, stest, rurtin,zmin,smax,g,r,l;

hat w,wmin;

wmin=a;
if (Nx[a][b] > 0.0)/* do not re.compute Nx[a][b] if akeady in table*/

{
nmin=Nx[a] [b];

}
else if (b <= (a+l))

{
if (b --= (a+l))

{
Nx[a][b]=l.0;

Nx[b][al=a;

]
nmin= 1.0;

}
else

{
aa--dw*(a-l.0);

bb=dw*(b-0.0);

zmin=9999.0;

for (w=a; w<b; w++)

{
ww--dw*w;

g=g2(aa, ww,bb);
r=r2(aa, ww,bb);

l=l.0-g-r;
/* reeursion equation for N(a,b) */

ntest--(1.0+l*N(a,w)+r*N((w+l),b));

NxFol[al=w;
/* calculate S(a,b) using same w as N(a,b) */

stest=S(a,b);

if (stest _ 0)/* to prevent possible divide by zero in wtest */
stest----0.0000001;

/* calculate N0/S0; store minimums in appropriate tables *1

wtest=ntest/stest;

if (wtest < zmin)
{

zmin--wtest;
nmin---ntest;

smax=stest;
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wmin=w;
}

}
Nx[a][b]=nmin;
Nxfb][a]=wmin;

Sx[a][b]=smax;
}

return(nmin);

double

S(a,b)/'* Compute the estimated probability of success given the current
window [a,b). This value is used in/(/(a,b) to calculate the
minimum N(a,b)/S(a,b) */

int a,b;/* a = lower bound; b= upper bound */
{

double S0,g20,r20;
double s,aa.ww,bb,zz;
double g,r;
int w,wmin;

aa=dw*(a- 1.0);
bb--dw*b;

if(Sx[a][b] > -1.0 )/* do not recompute Sx[a][b] */
{
zz=Sx[a][b];
}

else if (b <= (a+l))
{
zz=g2(aa, bb, bb);
Sx[a][b]=zz;
if (b !=a)

Sx[b][a]=a;

else
{

w=Nx[b][a];/* choose w equal to same value chosen by N(a,b) */
ww--.dw*w;
g=g2(aa,ww,bb);
r=r2(aa, ww.bb);

/* recursion relation for S(a,b) */
zz=(g+(1.0-g-r)*S(a,w)+r*S ((w+ 1),b));
]

return(zz);

****************************************************************
* main program for Approximate Recurrence Relation

main()
[
/*** The following variables have the same definitions as in ***
*** the original dynamic programming algorithm ***/
int i,j.k.la,lb,lw,ns,pp,wb[41 ];
int npkt,kstep,ntrx,icount,ncp,done,v flag:
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double w,sum,v,varian, xmean,conf;

float pfc,ccc,tx[41];

int cc[1000],/* array storing number of contention slots to resolve

contention for each iteration of the algorithm */

cflag;/* flag to determine whether confidence interval is
satisfied *I

float nl ,sl,zl ;/* temporary values for calculation of N( 1,ns)/S(1,ns)=
theoretical number of contention slots to resolve

contention */

double z,

N0,S0;/* procedures as defined above */

struct trns buffer;/* used to determine time required to simulate */

long int tm,tml; /* algorithm and to create lookup tables */

srand(1);

for(pp=20; pp<=20; pp+=10)

{

/* formulate dynamic programming table */
/* initialize matrices */

for (i=1; i<=300; i++)

for (j=l; j<=300; j++)

{

Nx[il[Jl=0.0;

Sx[i][j]= -1.0;

}

/* iterate on number of stations */

n--.40;

ns=10*n;

dw=0.1/(n+0.0);

p=(pp+0.0)/100.0;

la=l;

lb=ns;

/* N0 creates table */

z=N(la,lb);

nl=Nx[la][lb];

sl=Sx[lal[lb];

prinff("number of stations= %d0,n);

prinff("number in theory(N).(S)=");

prinff("%4.5f %4.5f0,n l,s I);

prinff("total number of slots= qM.Sf0,nl/sl);

prinff("user time, system time0);
bu ffer.tms_utim_times(&bu ffer);

bu ffer.tms stim_times(&bu ffer);

tm I =bu ffer.mas_stime;

tm=buffer.tms_utime;

printf("%ld---%ld0,tm, tm 1);

fflush(stdout);
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for (npkt=O; npkt<=NMAX; npkt++)
[
kstep=O;

done= 1;

while (done ==- 1)/* repeat contention until minimum has been isolated */
[
la--1;

Ib=ns;

for (k=l; k<=n; k++)

tx[k]=probO;

while (done _ 1 & lb > la)

{
lw=Nx[lb][la];

w=dw*lw;

/* collision detections */

for (k=1,ntrx=0; k<=n; k++)

if (tx[k] <= w)
ntrx-H-;

/* generate noise */

pfc---prob0;

/* determine state of network */

if (pfc <= p II ntrx > 1) /*collision*/

lb=lw;

else if(ntrx --' 1) /*success*/

done=0;

else /* no transmission */

la=lw+l;

kstep++;
l

I
/* conterttion resolved, store result */

cc[npkt]=kstep;

}/* end npkt loop */

* data analysis

lit

if(vflag _ 1)

{ /* initialize variables if new est of iterations, otherwise

add values in ce[i] to previous set(s) */
sum=0.0;

v--O.O;

vflag--O;

for 0c--1; k<=30; k++)

wb[k]--0;

ieount---0;

]
for (npkt=0; npkt<=NMAX; npkt++)

{ /* ealeulte mean and place ncp into appropriate bin for histogram */
ncp=ce[npkt];

icount++;

sum+--(nep+0.0);
ff (ncp > 4999)

nep=30;

else if (ncp > 1000)

ncp=29;
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else if (ncp > 200)

ncp=28;

else if (ncp > 100)

ncp=27;

else if (ncp > 50)

ncp=26;

else if (ncp > 25)

ncp=25;

wb[ncp]++;
xmean=sum/icount;

}
for (npkt=0; npkt<=NMAX; npkt++)

{/* calculate variance */

ncp=cc[npkt];

v +=-(ncp-xmean)*(ncp-xmean);

}
varian=v/icount;

conf--1.96*sqrt((double)(v arian/icount));

prinff("number of packets transmitted= %d0,icount);

prinff("avg, no. of contentions (sire)= %9.3f0,xmean);

prinff("variance, confidence-- %10.3f %9.3 f0,varian, conf);

fflush(stdout);
/* if confidence is not great enough, do more iterations */

ccc--0.05*xmean;

if (conf < tee )

cf_ag---0;
}/* end while(!cflag) loop */

/* print distribution */

prinff("noise(percent)= %d0,pp);

printf("---ncp ...... frequency---0),

for (k=l; k<=30; k++)

{
prinff("%d",k);

printf( .... );
prinff( "q',xt0,wb[k]);

}
prinff("user time, system time0);
buffer.tms_utim_times(&buffer);

buffer.trns_stim_times(&bu ffer);

tm 1=buffer.tms_stime/3600;

tm--buffer.tms_utime/3600;

prinff("%ld---%ld0,tm,tm 1);
fflush(stdout);

I
I

* end of main program for Approximate Recurrence Relation

.sp 5

* This program models both the greedy approximate window-control

* and binary-divide algorithms with or without load estimation.

* The appropriate sections are outlined be/* ... */and can

* be substituted in, depending on which simulation is desired.

* As in all the other programs, delta = l/(10n), and the algorithm

* is restarted if the window size becomes smaller than delta.

#include <.stdio.h>



#include<math.h>
#include<sys/tvpes.h>
#include<sys/times.h>

#defineNMAX799/*numberof trials in a given run */

/* prob0, return random # Unifoml[0,1)
*/

double

prob0

{

static double divis = 2147483648.0;
double y;

y=rand0;

return (y/divis);
}

main 0

(

!nt i.j,Lpp, cc[lO00],wb[411;
mt N;

int npkt,kstep,rttrx,icount, ncp,done,v flag,eft ag;

double p, dw,n,sum,v,varian,xmean,conf;
float pfc,ccc,tx[51 ];

struct tins buffer;

long int trn,tml;
double a,b,w,

wmv, /* wmv = moving average of previous windows used to
estimate n *]

C,D; /* temporary values used in the calculation of the

approximate greedy window-control algorithm *]

stand(I);

foffpp=0; pp<=90; pp+=10)
{

/* iterate on number of stations */
N=30;

n=N+0.0;

wmv=l.0/n; /* initialize moving window average to l/n */
dw=0.1/(n +43.0);

p=(pp+O.0)/100.0;

prinff("0umber of stations= %d0,N);

* simulate results
$

m

*****************************************************************
cflag=l;

vflag=l;

while (cflag _ 1)
(
for (npkt=0; npkt<=NMAX; npkt++)
{
kstep---0;

done= 1;

while (done == 1)
{

78
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a=O.O;

b=1.0;

for (k=l; k<=N; k++)

{
tx[k]=prob0;

}
while (done == 1 & (b-a)>dw)

{
/* compute new window */

* use the following calculations for the approxwnate

* greedy window-control algorithm:

* C=((n-1)*(a+b)+2)/n;

* D=(a+b + (n-2)*a*b)/n;

* w=(C-sqrt(C*C-4* D))/2;
******************************************************

* or use this calculation for binary-divide:

/* collision detections */

for (k=l,ntrx=0; k<=N; k++)

if (tx[k] <= w)

ntrx++;

/* generate noise */

pfc=prob0;

/* determine state of network */

if (pfc <= p IIntrx > 1) /*collision*/

{
b=w;

}
else if(ntrx == 1)/*success*/

done=0;

else/* no transmission */

{
a--w;

)

kstep++;

}
if (kstep > 5000)

break;

I
/* contention resolved: store result, */

/* compute moving window average and update estimation of n */

cc[npkt] =kstep;
**********************************************************

= add these calculations if using load estimation:

* wmv=(wmv+w)/2;

* n=ll(log(ll(l-wmv))); .... *******.

]/* end npkt loop */

* include data analysis here (exactly the same as the last program)

/* end of program
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1. INTRODUCTION

Functional programming frameworks are proposed in this paper for the design of highly refiabie

multiprocessor systems. In contrast to imperative programming environments, x functional environment

offers elegant, relatively simple, and efllcient solutions to concurrent error detection and recovery problems

in multiprocessors. Functional languages are aL_o known to offer features appropriate for development of

large parallel software systems including elegant data and procedure abstraction techniques, easily

identifiable parallelism, and the relative ease of proving program correctness [Vegd84]. Together, these

characteristics make them viable candidates for designing highly reliable multiprocessors. This is

illustrated in this paper through the development of mechanisms for efllcient and inexpensive concurrent

error detection and recovery in a class of applicative multiprocessor architectures.

A general approach to overall system structuring for fault tolerance has been described as being

based on (I) the use of idealized fault tolerant cornponentm, [2J reeuraive structuring, and (3) atomic actions

_Rand84J. Such overall system structuring helps in reducing the complexity of fault tolerance mechanisms

and thus leads to higher reliability. The applicative architecture presented herein is well structured with

respect to the above criteria. It employs abstract components defined such that each component can
° .

appropriately handle faults within itself and those in others it interacts with. Thus, they qualify as

idealized fault tolerant eornponentm. Further, the architecture is recuraively structured since units within the

system are identical and the functionality of each such unit matches that of the system. Finally, the

proposed design is based on applicative ta_k_, which are even more suitable for recovery purposes than are

atomic actions. When an atomic action fails, the machine state has to be restored to that which existed

before the atomic action began execution. An applicative task, on the other hand, can simply be re-

executed from the task definition because the corrupted machine state can be ignored by future

computation. Since no state restoration is required, the functional approach is also free from the Domino
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E_ect.

AppUcative systems exploiting large-grain parallelism are considered in this paper. While studies on

fault-tolerance aspects of such systems have not been reported in literature, researchers have studied fault

tolerance issues in machine archltectures exploiting fine-graln parallelism - namely, dataflow and

reduction architectures.

Several fault tolerance techniques for dataflow machines have been presented by Hughes _qugh831,

Leung and Dennis ILeun80], _unas [Misu76] and Srini [Srin8$]. These techniques, which include

checkpointing the entire system state, encoded interconnection, and triple-modular redundancy, do not

take advantage of the functional environment characteristics. Grit has outlined fault tolerance

mechankms for reductlon-hased multlprocessors [Grlt84] and more recently, recovery issues for sbnUar

systems have been studied by Lin and Keller [L_e86]. The target systems in these studies exploit

parallelism at a very j_ne grain. Functional programming is, however, also very attractive for exploiting

parallelism at hlgher levels. Parallel systems with a coarser grain of paraUellsm incur less overhead and

may be considered more pragmatk. Large-grain parallelism has been employed in systems such as the

Red_ow multiprocessor _el184], A_S [KeU79], and in LISP systems such as those proposed in _-Ials84]

and [Gabr84], which permit side e/fects.

The work in [GritS4] and IL_e86] is most closely related to this paper. The spec_c d_erences are

again primarily due to the granularity at which parallelism is exploited. In Grit's paper, each task reduces

& suh-expresslon and returns a result value to its parent. In architectures considered in our paper, data

structures such as trees and [inked lists are allowed. Consequently, a node does not simply receive & single

result value from its child, but may receive a pointer to an entire :tree or list. Elements of the data

structure might have been computed by various other nested functions. This consideration sign_cantly

changes the problem of identifying the set of tasks to be re-executed for recovery from errors. Also, while

Grit's is a message passing model, our architecture uses a shared memory system (in the sense of a single

global address space). Pointer based data structures necessitate shared memory. Finally, in the design of

fault tolerance mechanisms, Grit has assumed the processors to be/_-_op; that is, a processor becomes
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silent when a fault occurs. In our study, processors are capable of corrupting the system and mechanisms

have been designed to minimise, detect and recover from such corruption. Lin and Keller's work [LiKe86]

is devoted to recovery issues alone. They, too, "consider processors to be fail-stop. The discussion is at an

abstract "process" level and does not consider hardware or software implementation issues like

organisation of stacks and heaps and synchronization between tasks.

We begin with a definition of the system architecture in Sec. 2. Sec. 3 describes a set of mechanisms

for upset exposure and fault containment. In See. 4, we propose a task assignment protocol called the

Dialogue. The Dialogue defines messages between processor and memory modules and serves to establish a

mutual watchdog relationship between them. Sec. 5 discusses implementation of replication schemes

within the functional framework. Secs. 6 and 7 are devoted to recovery issues. In See. B, it is shown that

applicative architectures permit distributed, asynchronous, and incremental backups of the system state

for recovery. Finally, recovery procedures are presented in Sec. 7.

2. SYSTEM ARCHITECTURE

In this section, an abstract system architecture for an applicative multiprocessor system is defined.

This definition will serve as the target architecture for fault tolerance techniques described subsequently.

In specifying the architecture, we maintain a level of generality and abstraction such that a large class of

implementation strategies may be covered.

2.1. 1_lultiprocessor Organization

The multiprocessor consists of a pool of processing elements (PEa), a pool of memory modules

(MMs), and an interconnection network (IN). Since no assumptions are made regarding the interconnection

network, a large class of machine architectures are covered. Thus, widely differin, g configurations such

shown in Figures la and lb are permitted. Figure la represents a pool of processors sharing a multiport

memory system via a multistage interconnection network as in the CEDAR multiprocessor. Figure lb, on

the other hand, shows a configuration where processor-memory modules are connected together with an
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interconnection network as in hypercube architectures.

2.2. Programming Environment

Programs are written in a functional language llke pure LISP and are executed concurrently on the

multiprocessor. ParaUelism is achieved by evaluating function arguments (and, possibly_ the function

definition itself) in parallel. In order that the system be e_clent, not all expressions are evaluated as

separate tasks. Instead, processes are spawned only for major function applications. It_ajor functions may

be ident_ed either by a compiler or by the programmer.

It should be noted that single assignment languages are permitted. It sh_]! aLso become evident that

programs are required to be functional only externally, that is, as seen by the system memory and other

processors..% task could internally use side-effects as long as they are lhnited to PE registers or local

memory.

2.3. Operation

A request for the appUcation of a main function to a given set of arguments initiates a computation.

The maia function appUc_tion is evaluated by a recursive spawnlng of subtasks that evaluate

_, I /

(a) Cb)
F|g. 1. Possible h4ultlproeessor Configurations
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subexpressions. The subtasks may execute on the same PE as the current task or may be assigned to

another one. After creating children tasks, a parent suspends itself until results from the children become

available. When the children return results, the parent continues execution and finally dies, producing

results for its parent. Such operation results in a dynamically growing and collapsing task tree.

2.4. Data and Control Structures

Taak Nomcaclature

Ancestors and successor tasks for a given task have to be identified at run time for the purpose of

recovery. We define task-iris so that this identification becomes trivial. A task-H) of "1" is assigned to the

root task. Assuming a binary task tree, the children of a task N are assigned IDs of (2N) and (2N+I).

The nomenclature is easily extended to allow an arbitrary number of children for each task. For example,

ff a task has three children, IDs of (4N), (4N+I) and (4N+2) are assigned to the children.

Ta_k Descriptors

A Ta4k Descriptor (TDJ is illustrated in Figure 2a. It defines an applicative task completely. A task

Task ID

Pointer to Function

Pointer to Argument List

Pointer to Environment

Tuk ID

Tuk Status

Ruult (value/pointer)

Fig. 2a. Task Descriptor Fig. 2b. Task Token



createsasubtasksimply by placing a TD for the subtask on a task queue.

Ta4k Tokens

Task tokens (Figure 2b) are used for synchronization between a parent task and its children. When a

task is created, the parent also creates a corresponding token. The child returns its result via the token.

The status field in the token is used to indicate one of five states of the task:

X : Task does not exist.

C : Task has been created but has not yet been scheduled for execution.

A : Task is active, i.e., it is currently being executed by some PE.

S : Task is suspended. It spawned subtasks and is waiting for results.

D : Task is complete. The result field in the token contains the value of, or pointer to, the result.

Task tokens are organized in a tree. Each token includes pointers to tokens for subtasks. Thus, given

the task-D, and given that the location of the root token is fixed, the token of any task can always be

located.

Heap Segments

As in LISP, data cells for each task are allocated from a heap. The heap is implemented as a

distributed set of subheaps - one in each memory module. Heaps are broken down into Heap Segments -

each segment being a contiguous set of cells. Each activation of a task uses a new heap segment.

Control St;ack

Each task also gets a Slack Segment to be used as a control stack for calls to non-task/'unet|on=

(functions that are executed sequentially within a task and not as independent tasks). _/Vhen a task spawns

subtasks and suspends ]_tself, the corresponding stack segment also becomes dormant. When it resumes, it

continues to use the same stack segment. Finally, when the task completes and returns its results to the



parent,the stack segment is purged.

2.5. Information Transfer Relationships Between Tasks

A task isassumed to spawn allof itssubtasks at one time and immediately suspend itself.Thus, in

the absence of faults,each task is active only twice in its lifetime- once, when it firstcomes up for

execution aftercreation,and next, when itresumes execution after a suspension. The stateA, therefore,

consistsof two substates,A I and A2. A1 corresponds to the firstactivationof the task and A2 to the

second. This assumption is necessary only for simplicityin illustratingthe fault tolerance mechanisms.

Extension of the techniquesto allow an arbitrarynumber of activationscan be made easily.

Notation and De_nitlon_ :

Ti denotes a task with task-ID ---_i.

T_ represents the a _h activation of a task whose task-id is i. a can be 1 or 2 corresponding to states
A1 and A2 of the task. Each T_ is referred to as a "task".

/_i is the Heap Segment for task T_.

_i is the Stack Segment for task T i.

A (Ti*) is defined as the set of all ancestors of the task T_.

S( Ti_) is the set of all successors of the task T_.

A,(T, j) is defined as the set of all tasks in A(Ti a) U 8(T, a) that are executed before T_.

St( Ti_) is defined as the set of all tasks in A( Ti_) U S( Ti_) that are executed after T_.
° .

The arrows in Figure 3 indicate the order of execution of the tasks and the flow of information

Similarly, for the task T_,
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I I
I I
L J

Fig. II.Information transfer relationship between tasks

A,(T,') and conversely, results produced by Ti" can be referred to only by tasks in Sr(T_.

3. UPSET EXPOSURE AND ERROR CONTAINMENT

Hardware mechanisms described in this section limit error propagation between tasks and, at the

same time, permit concurrent detection of errors due to a large class of failures in the system. The

approach is based on verification of abstract behavior of applicative tasks and very little extra hardware hl

required to achieve a large fault coverage. -

3.1. l_ot|vat|on

In a functional environment, each data (heap) cell is written only once. All subsequent references to

the cell are read references. Further, the cell is written as soon as it is allocated from the heap - for

instance, as a result of a eont operation. Cells allocated to and written by (and oal¥ by) a task T_

constitute the Heap Segment H_ of the task. Only future activations of tasks in A(T_)_Jc_(Ti °) can read

this cell. We have defined this set as St(Tia). An error in a cell in _ can, therefore, propagate only to

tasks in Sr(TiJ). Reasoning along similar lines, an error in the stack segment E i or in the token _i can
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propagateonlyto tasksin Sr(Ti_).

Definition-We de nethe I>,"ofa task 7",.".theset

We can therefore state,

Property I : An error in D,." can only propagate to tasks in St, (Ti_.

Consider the occurrence of a fault during the execution of a task, T/'. If due to this fault, the error is

confined to Di", then it can propagate only to 8r(Ti" ). However, if the fault causes T/" to overwrite data in

another write-space D_, then the error could propagate to both, 8r(Ti" ) and Sr(TiJ). Further, since a

number of tasks in the latter set might already have been executed, recovery from the error in D/_ may be

expensive. Therefore, the domain D i" should be shielded from faults not "associated" with the execution of

r'.

Definition : We define a hult-class F 1 as the set of all faults, under the presence of which

(1) D," can be corrupted only while T/'is executing, and

(2) T,."cannot corrupt anything but D_'.

In terms of this definition, our strategy for fault containment will be that of covering as large a set of

hardware and software failures as possible within F 1.

3.2. System Design for Isolation of Heap and Stack Segments

We confine all three components - the heap segment /-/:, the stack segment '_i', and the task token

r:, of a domain D," (corresponding to a task T:') - within the same physical memory module. Thus, during

the execution of a task T/', the processor executing the task writes only to this /VIM. Further, no other

processor can write to this module during the execution of T,.'. In othe; words, for no pair of tasks T,."and

T/b, executing concurrently at a given time, are the domains D_ and D_ in the same memory module.

Each processor can be considered as being coupled to a ]Vfl_/. In a distributed system such as shown in

Figure la, this _f might be the processor's local memory. In a shared memory multiprocessor such as

shown in Figure lb, it may be any memory module. Under fault-free operation, a PE will write only to
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it's lVflV[. Therefore, in the absence of faults, no two concurrent tasks write data cells in the same memory

module. Of course, any task may, at any time, read data from any other memory module.

Heap space in each memory module is written in a monotone increasing order. A. cell i+l in a

module is written only after i has been written. Further, since only one task can be allocated heap cells

from a given memory module, the heap segment/_t of a task T,." essentially consists of contiguous cells. If

a PE executes tasks T;I 1 , T;_, T;_, etc. in that order, then the corresponding memory module will have

heap and stack segments u shown in Figure 4.

Thus, a simple counter at the memory module, serving as x top-of-tits-heap pointer, can be used to

check write accesses by the PE as illustrated in Figure 5. The counter is incremented at every heap

segment write access to the memory module. If the processor attempts a "heap segment write" to a

location other than the cell pointed to by the counter, the write is aborted and an error is signaled. Thus

a task T_ is not allowed to destroy the contents of a heap cell not on its heap segment/_,-.

Another up/down counter is used to point to the top of the stack segment currently in use. When a

PE starts using a stack segment Zi, it loads the counter with a pointer to the top of the segment.

Subsequently, for each stack access (push or pop), the pointer follows the top of the stack. When a PE

presents an address for a push or pop operation, the address is compaxed with the contents of this counter.

An attempt to write an illegal location in the stack space is flagged as an error.

H_I

I I I

I I I I
I I I I

I I I heapl
I I Ispacel

I I I I

I I I I

_ri21 Hi, I Hi, I

I I I I

I I _ l

I I I I
I I I

I I I
I Istack I

I I I

I I I _i2_'j41 L'D I

I I I

token
; space

I

F|g. 4. Heap, Stack, and Token Spaces |n Memory Modules
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Pop
Push

.Ad4ressBus

WriteI

__ Error
Counter

_a! fem°ry

Counter

Error

F|g. 5. Stack and Heap Counters at Memory Modules

3.3. Error Containment and Fault Coverage

The above scheme realizes the goal of isolating task domains from errors in the execution of other

tasks. The consistency checks enforced by the counters are very strong since the counters identify the

specific memory locations that can be written by the processor. Consequently, all transient and permanent

addressing faults in the PE, except for those involving heap segment read accesses, will be detected in

addition to any other PE malfunction leading to inconsistent memory references. Permanent

interconnection network faults leading to misrouted or dropped messages will also be detected.

4. SECURE TASK ASSIGNMENT

We define a task assignment protocol, called the Dialogue, which essentially results in a two-way

"watchdog" relationship between a PE and the corresponding MM. The Dialogue defines messages to be

used during task assignment phases and is aimed at achieving redundancy in information pertaining to the

assignment of tasks. The protocol is based on the following primitive messages between a PE and a M_M :

request_dialogue ( MM-Id ):

begin_dialogue ( PE-id ):
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suspend_dialogue ( PE-id or MM-id )"

resume_dialogue ( PE-id or MM-id )"

exit_dialogue ( MM-id );

respond_if_alive ( PE-id or MM-id )"

We illustrate the protocol with the following examples.

APE indicates to an MM that it wishes to start executing a new task by sending to the MM a

requelt_di_ogu_ message. This results in a packet

< PE-id, req_dialogue, MM-id >

to be sent to the MlV[. The M]V[ responds with a beg4_ialocue message. The PE then executes a task

corresponding to a task descriptor or stack segment residing on the particular IVIM. When a task is

complete, the PE explicitly indicates this by sending an exit_dialogue message to the IVflvi.

processor 1

memory module 1

pro_aor 2

memory module 2

requh-t l _ % f

disdo_ue J suspen_d t j
_elin diMogde I I

t di_loEue _ t I

req_eJt r

diMo_ue I
begin

diMozue

r
Execution of

T n and T a

I

requbst

diMogue

begin

diMogue

|

tuspend

I diMogue

f

I I

Assignment of

T_, to PE2

t

r_ume _exit

di_lozue di_lotue
t

I

resume exit

diMogue diMo_ue
I

I I

Completion or
_._--- T. and T m "_

Fig. 6. Dialogue : The Task Assignment Protocol
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A PE may suspend the current dialogue and request permission to join another dialogue when it

wishes to place a task descriptor in the stack space in a memory module other than the one it is currently

in dialogue with. Such suspension and subsequent resumption is accomplished using suspcnd._dialogue, and

resumejialogue and is illustrated in Figure 8. The figure depicts two PF_,-M_ pairs executing tasks T:I

and Ti2 respectively. At some point during the execution of Tit , a new task Ti3 is to be created and

assigned to PE2. PE1 suspends its current dialogue and requests a dialogue with MM2. In response, MM2

suspends its dialogue with PE2 and begins one with PE1./)El places a task descriptor for Tis on a fresh

stack segment in ]_vl2 and exits from the dialogue. It then resumes its dialogue with _M1 whUe MM2

resumes its dialogue with PE2. The respond if_alive message is a diagnostic message and is used

either when an inconsistent message is received or when a response expected from a partner is not received

in time.

With this protocol, redundancy in information pertaining to the assignment and execution of tasks is

achieved. While a task is being executed on a PE, the corresponding _ knows the ID of the task and

both expect well-defined responses from each other. An error is signaled when a partner does not meet the

protocol definition due to a failure. Further, any erroneous messages received by a PE-MM pair

participating in a dialogue from another PE or _ can be detected.

5. ERROR DETECTION BY REPLICATION

Error detection techniques described in Secs. 3 and 4 are not-adequate for detection of errors such as

incorrect arithmetic computation within the processor. Redundant computation using a second set of

resources (processor, memory, and interconnection) and a subsequent comparison of results may be

employed for detection o/" such errors. This section discusses how d:ual-redundancy may be incorporated

within the applicative task framework. The approach serves not only to detect an error, but also to

identify the particular task or set of tasks required to be re-executed for recovery.

The task tree is duplicated by invoking two copies of the top-level (main) function. We assume that

the scheduling mechanism guarantees that the resources used by the two copies of each task are distinct. It
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/

is also assumed that the scheduling mechanism is such that the two copies of each task execute close to

each other in time so as to minimise error detection latency.

A compiler inserts Compare..remuL_ tasks in the task tree which compare results from sets of twin

tasks. Note that a comparison of results of every set of twin tasks is not required. The Cornp,_re_relu/_s

tasks may be inserted at random points in the task tree (and one at the top). Choosing the density of

"compare points" essentially involves a tradeoff between the cost of the comparisons and the error

detection latency. Since tasks may return single values (atoms) or may return pointers to data structures,

comparisons for tasks returning atoms will cost much less than for those returning larger data structures.

Consequently, it is preferable that a large fraction of the comparison points cover tasks that return atoms

rather than large data structures.

While the Compare_remu_, task appears in both copies of the program, it is executed only once for

each pair of twin tasks. For the twin task that completes first, the compare task does nothing because

results from the second are not yet avaliable. When the second completes, the parent compare task

actually carries out a comparison of the results. Once an error is found as a result of the comparison, the

domain D_ in which the error first appeared is to be identified. This is accomplished by comparing results

of tasks along the erroneous path in the task tree.

6. SYSTEM MEMORY BACKUPS

Backups of the system memory onto a secondary storage are required for recovery after the detection

of an error. While systems based on imperative programming need to synchronise and backup the entire

system memory at every checkpoint, our architecture permits distributed,: unsynchronised and incremental

memory backup.

Data cells on heap segments are written only once during the execution of an application. At any

given time, the value of the top-of-heap pointer indicates what locations have been written until that point

in time. Thus the heap space may be backed up Incrementally - only memory areas written after the

previous backup have to be stored. Further, the backup process need not synchronise with the
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computation.

Unlike the heapspace,memory space used by stack segments is written more than once. Stack

segments are allocated when a task is spawned, are purged when the task completes, and may subsequently

be reused for another task. However, incremental backups are still possible. A stack segment for a task

may be copied out to a backup store when it spawns off child tasks and suspends itself.

The memory space allocated for task tokens is the only area which may be modified by the

processors at random. The token space in each memory module, therefore, has to be backed up periodically

in entirety. However, this should constitute only a small fraction of the memory space. In this case too,

the backup may proceed independently of the computation.

Task Descriptors may be written out to a backup store when a task is created. Since TDs for any

task can be regenerated if needed by re-executing its parent, the recovery procedures do not require a

backup of all TDs. Thus, only TDs for tasks at, say, every n-th level in the task tree are stored. There is

essentially a tradeoff to be made between the overhead of re--executing ancestor tasks to regenerate a given

TD, and storing a large number of TDs.

It is the .....
wrote--once characteristic and the consequent determinacy of applicative environments

which leads to the inexpensive backup scheme. In contrast, imperative environments not only require a

synchronisation of all processors at a harrier, but also have to save the entire system memory at each

checkpoint. Distributed checkpointing schemes may lead to the potentially disastrous domino effect.

7. RECOVERy PROCEDURES

7.1. Recovery From Errors Detected in D," During Execution of T_"

When an error due to a fault of class F I is detected during the execution of a task T_, recovery is
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accomplished by the following procedure :

Recovery Procedure P1,

I/• = I, the_

(I) Kill any tasks in Sr(T_ that have already been spawned.

(2) Purge the stack segment _i-

(3) l_e-execute the parent task T; using the task descriptor, TD/ to reconstruct the task

descriptor TD/.

(4) Retry T/using TD/and with a new heap segment H/and using z new stack segment _.

If a = £, then steps I and 2 are the same. Step 3 and 4 become :

(3') Re-execute TiL using the task descriptors TD/to reconstruct _ for T_.

(4') Retry T_ using _ and with a new heap segment H_.

Propertv P. : Recovery procedure P1 preserves correctness of results.

Proof : Consider steps 1 and 2. From the information transfer relationship between tasks shown in Figure

2, it is clear that any results computed in Sr(T_" ) are not referred to by any tasks in Sr(T _ • Thus killing

any tasks in this set that may already have been spawned does not aHect any uncorrupted tasks in Sr(T,-'_.

Of course, the tokens for the killed tasks are reset to state X and their stack segments purged.

In step 3, T_, the parent of T/, is re-executed in a new heap segment H; to reconstruct "_i" T/

thus has two heap segments, H/and" [/;. While the re-execution of T/_iU use the latter, other children of

T_ will continue to use the former. H/and f//are identical except for pointers that point within the same

heap segment. That is, • pointer p in H/to a cell within H/will not be equal to the corresponding pointer

in _r/. AJ/pointers in H/to cells not in H/wi]] be identical to corresponding ones in Hi 1. Further, any

atoms in H/wiU he identical to those in f//. The information contained in the two heap segments is, thus,

equivalent. Similarly, the new task descriptor for T_ is also equivalent to first.

Correctness for the case a=2 (steps 3' and 4 I) can be established along similar lines.
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7.2. Recovery from Errors Detected in D_ After Executlon of T_

A. Lost Data Celia

Case (1) : The lost data cell im auailable in backup store.

The contents are simply restored from the secondary backup memory.

Case {2): The lost data cell was created since the last backup.

In this case, T_ anc_ all tasks in St( 7",._) have to be re-executed. Note that si.nce T_ was executed after the

last backup, the set St( Tia) contains only a small number of tasks. Damage, therefore, is small

B. Lolt Stack ,qcffment_

Stack segments are created when a task is created and disappear when the task is complete.

Therefore, while a stack segment _ exists, a task could be in states C, A1, A2, or S. One or more cells

may be lost during this time. Recovery for cases when a Zi is lost while the task T_ is in one of the active

states, A1 or A2 has already been considered in Section 7.1. Here, we consider the case when the task is in

state C or S:

Case (1) : Task-ID ia not lost.

In this case, L'_ is reconstructed using the steps 3 and 3' in procedure P1 in See 7.1.

Ca_c (2) : Taak-ID ie lost.

Recovery in this case may appear di_cult. Since the task-ID is not known, which stack segment to

reconstruct is not known. The approach taken is that of purging the stack segment and waiting for an

eventual deadlock state where there are no active tasks in the system. In this state, all tasks in A (T_._) are

suspended because the parent of T/* is waiting for results from T_. Furthermore, tasks in S(TI a) will all be

in state D (done) or X (do not exist). From this situation, the Task-ID can be inferred. Subsequently, _

can be reconstructed and computation can proceed.
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Error Class

E 1 (See. 7.1)

E 2 (Sec.7.zA)

E 3 (Sec. 7.2B)

E4 (Sec.7.2C)

Es (Sec.7.s)

E6(sec.7.s)

Type of Error

Errors in D_ detected

during execution of T_"

Lost data cells in D i"

detected by tuk other

Lost cells in E i detect-

ed by task other than

Lost token T. detected
1 •

by task other than T_

Loss of PE

Loss of memory

module

Recovery Cost

Re-execution of single task

If •vai]zble in backup,

then recovered from back-

up else re-executlon of few
tasks

Re-execution of sinKle task

Re-execution of sinKle task

in worst case

Re-executlon of sinKle

task. system continues to

operate with performance

degradation corresponding
to loss of PE

Re-execution of • small

number of tasks

C,. Lost Tokens

The token for a task T_ is referenced by the scheduler to determine whether the task is done and by

the parent task which uses the result field of the token. In both cases, the token is examined only under the

situation where the parent is suspended. A token can be reconstructed as follows. We _rst check the status

of the children of T i. ]/ill children have • status X or D, then reconstruct the task descriptor for T i and

re-execute T i to reconstruct the token. Else, since the children h&ve been created and are active or

suspended, the task T i is suspended. Therefore, the status field in the token is set to S.
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7.3. Recovery from Loss of a Memory Module or PE

The loss of a memory module implies the loss of heap segments, stack segments, and tokens for

tasks corresponding to that module. However, if a spare memory module is available and can be

reconfigured into the system so as to replace the defective one, recovery can be easily accomplished. The

procedure consists of the following steps:

(I) Restore, from backup storage, the saved contents of the lost memory module. Since the restored

contents represent the state at the time of the b&ckup, some information may be lost.

(2) For each heap segment _ lost, kill all tasks in Sr(T;') and re-execute T,'. Once again, it should be

noted that this set Sr(Ti" ) is small because T i" was executed after the last memory backup for the

module.

When a task loses a PE, the task is simply re-executed on another PE when one becomes avaUable. The

performance of the system degrades due to the loss of the PE.

A summary of recovery costs for each case discussed above is presented in Table 1. It is clear that

even for such cases as loss of an entire memory module, the cost of recovery IS limited to re-execution of a

small set of tasks.

,

multiprocessor design.

proposed architecture :

CONCLUSIONS AND FUTURE RESEARCH

This paper has provided evidence that functional languages are highly amenable to fault tolerant

Three primary characteristics of functional environments are exploited in the

WelL-defined behavioral eharacteriatieo of applicative tasks, which lead to upset exposure techniques

relying on verification of the behavior, and which signal errors on detection of any illegal behavior.

Determinacy, or the property that given a set of arguments, the application of the function will

always produce the same result. Determinacy leads to inexpensive recovery procedures.

Side-effec_ free nature and the _infle assignment r_e, as a result of which we can do away with

expensive recovery cache mechanisms and can design recovery procedures free from the Domino
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Effect.Further,thesingle assignment rule permits incremental machine state backups.

Issues pertaining to garbage collection and other non-functional operating system tasks have not

been discussed in this paper. Future work is needed to incorporate them within the functional framework

for fault tolerance. Approaches for handlinK data structures such as (infinite) streams, exception

mechanisms such as eatchf_hrow, and for lasy/eaKer evaluation strategies , are also candidates for future

research.
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A MEASUREMI_T-BASED PERFORMABILrTY MODE3.
)FOR A MULTIPROCES.SOR SYSTEM

M.C. Iisueh and R.E. lyer t

Computer _ystems Group. Coordinated Science LJIbor•tory

University of Illinois •t Urbens-Champlign. Urban•. IL 61801

K.S. Trivedi,

Computer Science Department. Duke University. Durham. NC

This paper describes a measueement-bcqed performability model based on real error-

data collected on a muhi-proce,_or system. Model development from the raw error-

data to the e_tim•tion of cumulative reward is dem,cribed. Both normal and failure

behavior of the system are ch•racterized. The measured dat• show that the holding
times in key operational and failure states are not simple exponential and that • semi-
Markov proton-,; i.5 nec,m_'_ry to model the system behavior. A reward function, based

on the _ervice rate and the error rate in each •tare. is then defined in order to estimate

the performability of the system and. to depict the cost of different failure types and
recovery proceO u r_++.

|. Introduction

The development of realistic models to describe the failure behavior of computer systems is •

difficult problem. Although many authors have •ddres_¢_ the modeling issue and have

significantly advanced the state of the art there is little or no validation of these models with field

data. It is. therefore, extremely valuable to model the failure and recovery pro¢4,_ in a production
system using resi error data. Apart from providing useful information on how failures occur, this

proces.'_ also provides insight into the interaction between various system components.

In this paper we build a semi-Markov model to describe the resource-usage/failure/recovery pro-

ces_ in a large mainframe system. The model is based on low-level error and performance data col-
lected on an It|M 1081 system during iL_ normal operation. Both the normal and erroneous

behavior of the system are modeled. The results, therefore, provide •n understanding of the

different failure and recovery procem_ex and their rel•tionship to various types of resource usage.
Ilardware and the software reliability and their interaction is also modeled. A reward function

ba.,_,d on the service rate and the error rate in each =tote is then defined in order to estimate the per-
formability of the system, and to depict the ¢o_t of different failure types and recovery procedures.

Section 2 surveys related research in the modeling area and motivates our current research. Section

3 uses statb+tical clustering to build = state-transition model of resource usage. Different typ_ of
component failures and recovery procedures •re modeled in Section 4. A _emi-M•rkov model of

resource-usage/failure/recovery process is described in Section 5. and an analysis of the model
behavior is performed. In Section 6 we extend the model of section 5 to | semi-M•rkov reward

model in order to include the inter-rel•tionshil_ between workload and failure]recovery pro¢es_s.
Section 7 highlights important conclusions •rising out this work.

t Th/i work t'a, supporled ia l_s'i by NASA Irsnt NAG-I-61J. in part by the IBM CoTllors|,oll sod in part by the

Joint Scr,',ceJI IPl,..¢troa_-l+ Pro[rim (U.S. Army. U.S Navy. U-g. Air For¢lJ undmr ¢olltrnct number N00014-14-C-0149.

I ]hUb work v,'Lt sol=ported by the Air Force Other of .4kienlilb_ Research under ¢oatr_¢l Ar-O_;il-a4-Ol.12.
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2. Related Research

Analytical models ror hardware failure have been extensively investigated (see [1] for a summary).

Although the time for different components to fail is usually assumed to be exponentially distri-

buted, time-dependent failure rates and graceful degradation [2.3] have been considered along with

performability L,,._'ue_. Non-exponential distributions can also be modeled using the method of

stage.'_ [4]. but for complex systems this method can result in an explosion of states. A job/task
flow beryl model is described in [5]. Failure occurrence is assumed to be a linear function of the

service requests from a job/task flow. As shown in [6]. the assumption of linearity may result in

underestimating the effect of the workload, especially when the load is high.

Most software reliability models usually refer to the development, debugging and testing pha._s of
the software [7]. Few of these models have been applied to the operational phase. In [8] and [9].

software failures in an operating environment are studied. P,oth studies found that at least 60% of

system failures were software related. There is little explicit study of hardware/software reliabil-

ity. In [10]. software failures related to hardware problems in the operating system are analyzed
and it is shown that errors in the hardware/software interface are often fatal. In [ l ! ]. a methodol-

ogy for joint hardware/software model construction and model processing using Stochastic Petri
Nets isdescribed. "

With the exception of software reliability growth models, very few of either the hardware or the

software models have been validated with real data. Exceptions are the hardware and software

model discu_ed in [ | 2] and. a measurement-I_sed model of workload dependent failures di_ussed

in [h]. I_oth. however, only describe the external behavior of the system and do not provide insight
into component level behavior. It is. therefore, highly instructive to construct a detailed model

based on low-level error data from a production system. Toward this end in the following sec-
tions, we construct a joint resource-usage/failure/recovery model using error and workload data
from a production system.

J. Resource U-age Charscterizatlon

In this section we build a state-lransition model to describe the variation in system activity. It
will be .¢_en in .Section 5 that this approach allows failure to be considered as a transition from nor-

mal activity..System activity is characterized by a number of resource usage parameters. A sta-

tistical clustering technique is employed to reduce the potential many to many transitions of the
workload vector to a small number of states representative of tho_ found in the data, The data

for our studies came from an film 3081 system running the MVS operating system. The system

consists of dual processo_ with two time-multiplexed channel _t.s. Together these two sets allow

a maximum of 2d subchannels to be simultaneously active in each ]/O cycle. The workload data

were collected using the IBM MVS/370 system Resource Management Facility (RMF) [13]. The

results presented here are ba_d on three months of sampled RMF data. with a _mple time of 5(X)

milliseconds. The sampled data is then averaged on an hourly basis. Four dilTerent resource usage
measures were selected:

CPU - fraction of the measured interval for which the CPU is executing instructions.

SIO - number of succes.'_ful Start I/O and Resume I/O in._tructions i._ued to the channel,

DASD - number of requests serviced on the direct access storage devices, and

CIILI - fraction of the measured interval for which the channel was busy and the CT*U was in

the wait state (this parameter is usually used to measure the degree of contention in our
system ).

At any interval of time the measured workload is represented by a point in 4-dimensional space.
(CPU. CI]B. SIO. DA.SD). Cluster analysis is used to divide the workload into similar classes

according to a pro-defined criterion.: This allows us to conci_ly describe the dynamics of .system

behavior and extract a structure that already exists in the workload data.z

Ipotentially. -'e can haveut_countably laq_enumbeT of points in the workload space. Intuitively. only m countable
number of ¢ombinntionsof four measuresdo in fact occul. Further, itis seenthat they usually occur in clusters.

_Similsr clusterint techniquesire also used for workload chsrsct¢_'i_'stionin [14_.
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Each cluster (defined by its centroid) is then usedto depict a system state and. a st.ate-transition

diagram (consisting of inter-cluster transit/on probabilities and cluster sojourn times) is developed.

A k-means clustering algorithm [1.5] was used for ciu._ter analylis. The algorithm partitions an N=

dimensional population into k sets on the basis of a sample. The k non-empty clusters. CI.C2.....C _ ,
sought are such that the sum of the squares of the Euclidean distances of the cluster members from
their centroicb; is minimized, i.e.,

1

__llx,--£_ II 2 -" minimum

where xi _ C, and i i is the centroid of cluster C_.

Two types of workload clusters were formed, In the first case CPU and GlIB were selected to be

the workload variables. ThL_ _ombination was found to best describe the CPU-bound load (nearly

60% of the observations have • CPU usage greater than 0.72). In the second case the clusters were

formed considering SIO and DASD as workload variables. This combination was found to best
describe the I/0 workload. Table I shows the results for these two cases. An examination of the

Cluster % of" Mean Mean $td dev Std dev

id ohs of C-'PU of CHB of CPU of GlIB

W r 7.44 0.0981 0.1072 0.0462 0.0436

W z 0.50 O. 1i 26 0.5525 0.0433 0.0669

W_ 1.15 0.1_41 e_t,_l O,gl_ll 0.O7_

W, 11.41 O.]II_H_ O.1617 0.0.I_O 0.04J_I

W_ 0.74 0.3639 0.3819 0.0365 0.1923

W b 17.12 0.5416 0.12&7 0.0560 0.0511

W 7 22..$8 0.7207 O.084/_ 0.0576 0.03OI

W_ 36.48 0.9612 0.{}168 0.0362 0.OI43

R 2 of CPU - 0.9724

R ;+ of Glib - 08095

overall R 2 - 0.9604

(a) CPU bound workload

Cluster % of Mean Mean Std dew $ui dev

id ob_ of SIO of DASD of SlO of DASD

W, 8.89

W 2 36.05

W_ 1.48

W 4 1.73

W s 42.72

Ws 0.49

W7 7.9

WI} 0.74

R "_of SIO - 0.8861

R2 of DASD- 0.7176

overall R 2 - 0.8751

16.80 0.95 6.80 1.30

41.,59 2.99 7.51 !.92

44.37 20.62 8..55 4.18
60.07 311.84 6.'/7 8.42

67.34 5.19 7.92 3.72

1_7.30 31.19 3.87 9.84

96.20 6.02 8.73 3.34

141.10 I0.10 10.28 8.50

(b) 1/O workload

Table I. Characteristics of workload clusters
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table shows the dynamics of system behavior. We see in Table l(a) that about 36% of the time the

C|'U Lx highly loaded (0,96) and almost 76% of the time the CPUIoad is above 0.5. Since the meas-

ured system is a two-processor machine, we may say that 76% of the time at least one of the pro-

cec_or_ is busy. Note that. with increasing CPU usage. CIIB (CPU wait and channel busy)

decreases. This indicates that resource contention is not a problem in the measured system. In

Table I(b) (the I/O load), both W 2 and W 3 have a very close channel start I/(} rate (SIO) but the

dmk service rate (DASD) of W_ is as much as |0 times that of W z. This is most likely due to the

fact that some I/O requests result in a burst of data while the others in only a few words. Burst

transfer however occurred only 4% of the time (W_ + W 4 + Wb). This result may be due to the

fact that our measurements were made during work hours, but I/O bound jobs are normally exe-

cuted during of-work hours. A state-transition diagram of 1/O activity is shown in Figure !.

Notice that a null state. W u, has been incorporated to represent the stale during the non-measured

period. The transition i_robability from state / to state j, p,j. is estimated from the measured data
using:

observed no. of trsnsitions from state _ to state j
p_O =

observed no. of transitions from state i

Figure I also confirms our previous observation that most often the l/O workload fluctuates back

and forth between lwo moderate levels, W z and W S (0.69 and 0.56) and that there are occasional

requests for burst I/O.

Figure I. State-transition diagram of resource usage (!/0 Workload)

4. Failure and Recovery Characterization

In this section the collection and characterization of the errors and the error recovery is discu_ed.

A state-transition diagram to describe different failure and recovery states is developed. The sever-
ity of failures and effectivenL-._ of recovery are obtained.

Data on six different types of errors were collected. These data are automatically logged by the
operating system as the errors occur. Details of the logging mechanism are described in [16].
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(I) CPU-related errors

( 2 ) Tern porary channel errors

(3) Temporary (soft) disk erro_

(4) Temporary (hard) disk errors

(5) Permanent dixk errors

(6) ,Software errors

- those that affect the normal operation of the CPU; the

errors may originate in the CPU itself,in the main memory.
or in a channel

-those chat are recovered by channel retry and do not result

in the termination of the channel control program

- those I/O errors that are recovered by correcting the data or
by retrying the hardware instruction

- those I/O errors that are recovered by software instruction

retry or by functional recovery routine

- those I/0 errors that are not correctable and can not be

recovered by retrying the operation

- software incidents that are due to invalid supervisor calls.

program checks and other software exception conditions

Due to the manner in which errors are detected and reported in a computer system, it is po_ible

that a single fault may manifest itself as more than one error, depending on the activity at the time

of the error. The different manifestations may not all be identical [17]. The system recovery usu-

ally treats these errors as isolated incidents. In order to address this problem, and to ensure that

the analysis is not biased by error records relating to the same problem, two levels of data reduc-

tion were l_erformed. First, a coalescing algorithm described in [6] was used to analyze the data

and merge ol_servations which occur in rapid succession and relate to the same problem. Next. a

reduction technique described in [17] to automatically group records most likely to have a common

cause, was used. By using these two methods, errors were classified into five different cla.sse_.

These cla_.,;es are called error (or failure) events since they may contain more than one error and
are defined as follows.

CPU :

CHAN :

SWE :

DASD :

MULT :

that caused errors to be logged only as CPU-related errors

that caused errors to be logged only as channel errors

that caused errors to be logged only as software errors

that caused errors to be logged only as direct acce_ storage device errors

that caused errors affecting more than one type of components

Table 2 I_SL_ the frequencies of different types of failures. Notice that about 17% of failures are

classified as multiple failures (MULT). A MULT error is mostly due to a single cause but the fault

has non-identical manife_,_tations, provoked by different types of system activity. Since the man-

ife_tations are non-identical, recovery may be complea and hence can (as will be seen later) impo_
considerable overhead on the system.

Type of

failure Frequency,

CPU 2

CIIAN i 19

MULl" 924

SWE 1923

DASD 2364

total 5332

Percent

0.04

2.23

17.33

36.07

44.33

i00.00

Table 2. Frequency of failures

When an error is detected in the measured system, an appropriate recovery procedure is invoked

depending on the severity of the error. The recovery procedures were divided into four categories

in increasing order of recovery cost. The recovery cost was measured in terms of the system over-
head required to handle an error. The lowest level (hardware recovery), involves the use of an

error correction code (|'CC) or hardware instruction retry and has minimal overhead. If hardware

recovery is not possible (or unsuccessful), the next level, i.e., software controlled recovery, is
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t .
invoked. This could be simple, e.g.. terminating the current program or task in contro|, or complex.

e.g.. invoking specially designed recovery routine(s) to handle the problem. The third level of
recovery, alternative (ALT). involves transferring the tasks to functioning processor(s) when one

of the processors experiences an un-recoverable error. If no on-line recovery is possible, the system

is brought down for off-line (OFFI.) repair. Figure 2 shows • now chart of the recovery rrocex-;.

f

CPU. CIIAN. DASD -_11_

SWE, _ --_

fai

fat

R_ succe_ful

d

'R_ successful

ed

.T_ successful

ed

successful

Figure 2. Flow chart of recovery processes

Table 3 lists the distribution of successful recovery due to various levels. About 73% of the errors

were successfully handled through hardware recovery and most of the others were recovered from

by the software.

Recovery

Procedure Percent

IIWR 73.35

SWR 26.56

AI.T 0.02

OFFL 0.07

Table 3. Percentage of recovery procedures

5. Resourr, e-Utage/F'ailure/Recover_ Model

In this .,_ection we combine the soperate workload, failure and recovery models developed so far

into a single model shown in Figure 3. The model has three different classes of states-, normal

operation states (5.v). failure states (.St). and recovery states ('_e)"

Under normal conditions, the system makes transitions from one workload t_tte to another. The

occurrence of an error results in a transition to one of the failure states. The system then toes into

one or more recovery modes after which, with a high probability, it returns to one of the "good"

workload states. The state transition diagram shows that nearly 98.3% of hardware recovery

requests and 99.7% of software recovery requests are succ_-,_ful. Thus the error detection, fault
isolation and on-line recovery mechanisms allow the measured system to handle an error elEciently

and effectively. In only le,._ than I% of the cas_ is the sy_em not able to recover.

Figure 4 shows the state-transition diagram of a multiple failure (a MULT event) i.e. given that a

multiple failure has occurred. The model shows that disk and software errors are strongly corre-

lated in multiple failures, l:rom the diagram, it is seen that in about 65% of the cases a multiple
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O030

L°

to good
workload

_'l_tes

Figure 3. State-transition diagram of resource-usage/f&ilure/recovery model

from good
workload

/ states

.29 I .5

.4

workload

&rates

Figure 4. State=transitiondiagram given a multiple failure (MUTT)

failure starts as a software error (SWE) and in 32% of the cases it starts as a disk error (DASD).

Given that a disk error has occurred, there is nearly a 30_ chance that a software error will fol-

low. It is also mterating to note that there is a 64% chance that one software error will be fol-
lowed by another different software error.
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5.1. Walttnl E and l|oldtnt Time Distributions -

Table 4 shows the characteristicsof both the workload and failure states in terms of theirwaiting

# of Mean

State obs waiting time

W: 53 1263.71

• W 2 2 289.65

W 3 20 698.?9

W, 130 1203.05

W s 11 613.74

W b 147 1380.86

W 7 268 1071.31

W l 266 1612.72

Standard

deviation

1384.20

1.19

913.30

1130.28

421.73

1588.76

1(X)4.46

2576.35

Std Error

of mean

190.13

0.84

2O4.22

99.13

127.16

131.04

61.36

157.97

(a). CPU Workload states

State

• of Mean

o1_ waitint time

CIIAN 13 5.08
SWE 201 41.35

DASD 401 120.86

MUI.T 77 293.28

Standard

deviation

18.31

103.35

223.89

262.84

Std Error

of mean

5.08
7.29

11.18

29.95

(b). Failure states

Table 4. Characteristics of waiting time (seconds)
in workload and failure states

tlmes ;. Only the CPU workload is shown in the table. Results for the I/O workload were similar.

States W 2 and W5 in Table 4(a) were ignored since they had very few observations. An examina-

tion of the mean and standard deviation of the waiting times indicates that not all waiting times

are simple exponentials. This is particularly pronounced in Table 4(b) which refers to the failure

state_. Figure 5 shows the densities of waiting and holding times for one of the workload states.

W s. Figure 5(a) shows the waiting time for W s and 5(b) and 5(c) represent the holding time from
this state to DASD and SWE failure states. These densities are fitted to phase-type exponential den-

sily functions [4].
q

n

where a, >t0. }'a, = I and n is the number of phases. The g,(t) function can be an exponential.

tie|

multi-stage hyperexponentisl, or muti-stage hypoexponential density function. The densities in

Figure 5 were fitted to the following functions (tested by using the Kolmogorov-Smir_ov test [4] st

a 0.01 significance level).

(1) waiting time : [ (t) J, 0.000146e "_'_'z' + 0.000939e "°°°'''_ + 0.000033_ "°'anoztoTj

(2) to a DASD failure : / (t) =c 0.00094e "°''_u' + 0.O(X)E355(e _'¢J'm_r _ e -e.oms'_ )

(3) to a SWE failure ; / (t) _ 0.00085e "°°°_ + O.O00701(e "tfx"p_lt" - e "4'_ul_ )

_l The wait•nil time for stale i is the time that the prates| spel_ds in stale i before re•kin| s Irons•lion. The holding

lime for • sT|nail•on from stale I 1o state j is the lime this lhe process spgnd_ in slate i before malting a tran_itton Is state

j I:sL
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Prob.

0 20 40 60 80 IO0 120 140
Duration (minutes)

(a) Waiting time density of state W a (CPU - 0.96)

Prob. 0.2 .......................................... t

O 20 40 60 80 IO0 120
Duration (minutes)

(b) Itolding time dcn_ty i'rom state W s tO indR¢ DA_I)

Prob.
0,2

0.0
0

20 40 60 80 I O0 1:20
Duration (minutes)

(c) llolding time density from state W s to state SWE

Figure 5. Waiting and holding time densities

5.2. Recovery Distributions

in our data the selection of the destinations from any state of _el, was found to be independent of

the holding time distribution. Further. for our system the time taken for each type of recovery can
reasonably be considered constant. The overall recovery time. i.e.. the duration of an error event

(or the holding time in an error state), however was not constant, since an error event may involve

more than one recovery attempt. This time is computed as the time difference between the first
detected error and the last detected error, caused by the same event. The duration of an error

event can be used to measure the effectivene_ of recovery and also the severity of error. Figure 6
_hows examples of failure duration densities for three different types of errors. Again. the follow=

ing phase-type exponential densities were fitted to the functions below (tested at a 0.01 significant'evel).

II)DASD: /(t)- 0.0375e -°'Is' + 0.007c "°'t' + 0.008635e "o,el45¢_ + O.O00186l,--o.oo2wn_
C2) SWE : j'(t ) - O.041181e "°'°'4sib ÷ O.O(X)2704G "0.003_7_"

:3) MUTT: J'(t ) .. O.OO4371(e "e'aoJalTt . e "e.°)°l°_)
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0.0
0 2 4 6 8 10 12 14

Duration (minutes)

(a) DASD failure duration density

Prob.
0.5

0.0
O

I I ....... , A I i

2 4 6 8 IO 12 14
Duration (minutes)

(b) SWE failure duration density

O.lO

Prob. 0.05

0.00
O 162 4 6 8 !0 12 14

Duration (minutes)

(c) MUI.T failure duration density

Figure 6. Failure duration densities

In summary, we have developed a state transition model which describes the normal and failure

behavior of the system, Some key characteristics of the model are that the waiting time in some of

the workload and in most failure states cannot be modeled as simple exponentials, Furthermore.

the holdin t times from a given workload state to different failure state are dependent on the desti-

nations, Thus. the overall system is modeled as a complex irreducible semi-Markov process.

5.3. Effect of _orkload

Now that we hive an overall model, we show the u_ge of this model to examine those states

which are crucial from a failure viewpoint. For the computations in this section we consider the

state OFFL of figure 3 as recurrent making the overall mode] ergodic. We then compute the steady
state probability of being in a specified workload state and making a transition to a specified failure

state. Table 5 shows the probabilities of a failure occurring at various load levels, in this table,

"time" refers to the mean holding time to the fleeted suLte. An important relation between failure

probability and holding time in a workload state is seen in this table. The failure probabilities

appear to be not only a function of resource u._ge [6]. but also related to the length of the holding
time in a resource usage slate. For example, in Table 5(a). the probability of a channel failure is
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almost the same for two different CPU loads. 0,9b and 0.54. The mean holding time be[ore a chan-

nel error occur._; at the lower load is larger than that at the higher load, i.e. 1304.96 seconds vers_

66_. 18 _.'¢onds. When the holding times are similar, however. (or increasing with increa_/ed usage).

the failure probabilities do increase with increasing resource usage. A similar phenomenon also

exi._ts for the I/O workload (see Table 5(b)). Thus, not only does a higher workload result in a

higher failure probability (for similar holding times), but the failure rate also increases with

increa._ed holding time in a particular state. In other words, the failure rate appear_ to be a func-

tion of the absolute amount of resource consumed in a given state, be it through increased work-

load and/or increased holding times. An explanation for this apparent "wear out" phenomenon is

not clear (since a large majority of our errors are transient), but it certainly calls into further ques-

tion the validity of the frequently u_d constant failure rate a_umption in reliability modeling.

Fillure sta|e

(._U CHAN $WE i)A_;D MULT Total

la_d Time Prob Time Prub Time Proh Time _'_"-_._ Prob

0._ e_l.lll 0-0011 It_09.'/I 0-071b 1211.{)2 0.129{) ! 1641.20 0.0ZtS$ 0.2377
0.72 5'_6.2B O.GOJ2 1111.12 0-0492 97 I.{)2 0.0_0 ?.q7.09 0.0146 0.1_1

0.34 I ._04.96 0-0010 I._07.92 0.0471 1070-10 0.04_9 722.2{) n:_t__$2 0.1027

Time. in ,econds.

(a). CPU workload

]F_dlure s taP,e

DA_D CHAN SWE DAUb MULT T_i

t-c_d Time Prob Time Prob Time Prob Time Prob Prob

_6.20 0 O 256.23 0.0022 434.54 O.0162 $71.97 0.0046 0.02.1--

67..14 llgW.3.S 0,0049 1243..15 0,0917 1170.14 0.1140 921.12 0.0262 U..1131
41.59 4522.{)7 0-0214 1516.92 0.01175 1141.11 0.1191 1216.{)7 0.0234 0.2._21

Time - inMconds,

(h). DASD workload

Table 5. Holding time and transition probabilities to failure states

6. Performability Analysis

In this ._"¢tion we use the workload/failure/recovery model to evaluate the performability of the

system. Reward functions are used to depict the performance degradation due to failures and aLso

due to different types of recovery procedures. Toward this end. we define a reward rate for each

state of the workload/failure/recovery mode]. We propose the reward rate. r i (per unit time):

r i
si if i • S s U $r

$_ 4- e_

0 ifi t$ n

where, the s, and e, are the service rate and the error rate in state i. respectively. Thus one unit of

reward is given for each unit of time when the proce_ stays in the good states SN. The penalty

paid depends on the number of errors generated by a failure. With an increasing number of errors

the penalty Per unit time unit increases, and accordingly, the reward rate decreases. Z_o reward is

assigned to recovery states. Based on thi_ proposal, reward rates [or the failure states are as shown
in Table 6.

The reward rate of the modeled system at time t is a random variable X(t). There/ore the
expected reward rate l'_X(t )J can be evaluated as:
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LState I[ DASD I SWE I CliAN _ MULTI

L r, II 0.5708 j 0.2736 I 0.9946 [ 0.2777_

Table 6. Reward rates for failure states

l_X(t )]. Z pi(t _'i •
i

The cumulative reward by time t can be derived from Y(t ) a_/X(o')do.. Therefore. the expect

cumulative reward is given by [3]"

EiY(t )] = E X(cr_ =)% p,(_,)#c,
i " °

where pi(t ) is the probability of being in state i at time t. In order to solve for p,(t) and henc
other measures, we convert the semi-Markov proces_ into a Markov chain u_ing the method c

stages [4.19]. Thus the state probability vector P(t ) --- (....pi( t )....) can be computed by solving th_t of differential equations of the form:

d

_ Pft) = p(t)Q
dt

where Q is transition rate matrix of the Marker chain [18]. In order to study the impact o!
different types of failures, the irreducible semi-Markov process was converted to one with absorb-

ing states in the following manner. Analy._.-s were performed on the resulting Markov reward

model of the system using SilARPE (the Symbolic Hierarchical AUtomated Reliability and Perfor-
mance l..'valuator)4 developed at Duke University:

w,th OFFL as the absorbing state (OFFL),

b) with MULT and OFFL as the absorbing states (MUI.T).

c) with SWI', MULT and OFFL as the absorbing states (SWE).

d) with DASi). MULT and OFFL as the al_orbing states (DASD). and

e) with DASD. SWE. MULT and OFFL as the at_rbing states (ALL).

In case (a) we a.s.'se_ system performability in which all but off-line failures are not recovered

from. In case (b) we discontinue recovering from multiple failures. Since multiple failures happen
much more frequently than OFFI.. we expect to measure the impact of SWE and DASD on the

reward to a MULT failure. In case (c) we not only stop recovering from multiple and off-line

failures but we also stop the recovery from software failures. In case (d) we recover from SWE

failures but stop recovery from DASD failures. Finally. in case (e) we do not recover from any
failures. We compare these SCenarios first using the expected instantaneous reward rate E[X('t )].
then using the time- averaged expected accumulated reward E[Y(t )]/t. in all but case (a) and (e)

we consider two variations: when a state such a• DASD (MULT or SWE) is made absorbing, we can
either let the reward rate in auch • state be non-zero or we can set its reward rate to zero. The

impact of the zero assignment is that upon reaching the absorbing state, the system continues to

operate in a degraded mode. In the latter case. we conservatively a.c_ume that the system Stopsfunctioning when it reaches the absorbing state(s).

In Figure 7(a). we plot F._X(t )_ for cases (a) and (b). In the latter case we use two different

amumptions for the reward rate for the MULT state (hi: rsntr =0 27777. b2: rsn/zr=O)" We also

¢ SHAIPE is • modlelirl| too|. It provides severll mode! types rmnl_in | from reltabilily black diqDram m Io COmplex semiMsrkov modHs IlgL
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plot E[X(t )] for case (a) with the a._umption that all states have exponentially distributed holding

times. We note that such I Markovian a_umption leads to an overestimation of the system's capa-
bility to perform useful work. We also note that not recovering from multiple failures consider-

iloly degrades the system's performability, Furthermore. changing from case b] to the conserva-

tive case b2 further reduces the system's effectivenessdrastically,

in Figure 7(b). we plot the F_.[X(t )] for cases c. d and e. In each case. except case e. we have two ver-

sions with reward rates for absorbing state_ being non-zero and zero. respectively. Note that not

recovering from SWE failures degrades system efl'ectivenes._ considerably compared with the effect

)[ not recovering from DASD failures, provided we a._ume that absorbing states continues to pro =

vide _rvice in a degraded mode. On the other hand, if we assume that alxmrbing state= are system
_ailure states, i.e.. zero reward rates for absorbing states, then not recovering from DASD failures

Ls more _vere than not recovering from SWE failures. This behavior is explained by the fact that

the reward rate in the I)ASi) state is about twice that in the SWE state. Figures 8(a) and 8(b) are

Lhe counterparts of Figures 7(a) and 7(b) where the measure plotted is FAY(t)]/t rather than
[:.[X(I )]. The trends are similar.

:..:'.-

-i::?::

, ?! :!

FAX(t)]

!.0

0.$

0.0
0

!

5 10 15 20 25 30 35

• 24 hours

(a)

E[X(O]

1.O

0.5

0.0
0

DASD (r.r. > O)

...............
__WE(rr O)
.... i i i i i i _----_ ! ...... ".'_ i t

5 10 1.5 20 25 30 35
Minut_

(b)

(r.r. : reward rate)

Figure 7. The expected reward rite, FAX(t )]
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-_-- C_:F_sr_ov) ...........................

............ .........

r.r. -0)

0 5 !0 15 20 25 30 35

• 24 hours

(a)

1.0

E[Y(t)]/t
0.5

O.U

..... .............

).._ ----

AI.I. (r.-_. - 0)

.... -_' .... I*O .... I'._ " " ' ' 20t .... 251 .... 30' " " " ' 3._1

Minutes

(b)

(r.r. : reward rate)

Figure 8. The time-averaged accumulated reward. E[Y(t )]/t

I:inally, in Figure 9, we plot the distribution function of Y(oo), the accumulated reward until sys-
tem failure, for two ca._: Markov versus semi-Markov. Lloth a._ume that the OFFL state is the

only absorbing state. Once again we note that the Markovian a_-_umption implies an overestimation
of the system's performability.

7. Conclusion

In this mudy. we have proposed a methodology to construct a model of reu_urce usage, failure and

recovery in a computer system, using real data from a production system. The semi-Markov

model obtained is Cal_tble of reflecting both the normal and failure behavior of our measured sys-
tem. The errors are classified into various types, based on the components involved. Both

hardware and software errors are considered, and the interaction between the ._ysl.em components

(hardware and software) h_ reflected in a multiple failure model. The propo._.d reward measure

allows us to predict the performability of the system based on the service and error rates. It is

suggested that other production systems be similarly analyzed so that a body of realistic data on
computer failure and recovery models is available.
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Figure 9. Distribution of accumulated reward until system failure
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Abstract

In this paper we build • som/-Markov model to describe
the software error and recovery process in a large mainframe
system. The model is based on low-level as-rot data from the
MVS operating stream running on an IBM 3081 machine. The
seml-Markov model developed provides • quantiAcation of
system error characterimlce and ti_ inte_ction betwe_
differs• types of errors. As an example, we provide • detailed
model and analysis of multiple errors, which constitute
approximately 17% of all soft_t_e errors and result in coneid-
arable recovery overhead.

1. lnu_luctiun

The problem of modelin s software reliability" during the
development, debugging and validation phases of the software

cycle is • well researched area. However, there are few s_udies
which model software e_or and recovery pr_emea in-afully

oparst/onal product/on environment. The di_'ulttes are p*_ly
due to the fact that. m_Uke computer hardware, which is rea-
sonably modularized, each software system can have its own
peculiar characteristics. At this stage, it is extremely valuable
to develop a comprehensive model quantifying the software

error and recovery proceesm in a production system using real
data. In addition to providing useful information on how and
when errors occur in the real world, this procem provides the
quantification of the interaction among different types of
errors: an important result for developing analytical models.

In this paper • stat.-tnnsition model to describe the
software error and recovery processes in • complex operating
system is described. Measurement. were made on an MVS
(Multiple Virtual Storage) system running on an IBM 3081
mainframe. Tim_ped low level error and recovery data
from MVS. collected during the normal oparst/on of the sTs-
tern, formed the _ for developing the model. The semi-
Markov model developed from the real data provides e
quantification of the system error characteristics and also gives
an insight into the interaction between the various software

error and recovery processes occurring during normal system
operation.

1.1. Related Research

Most software reliability models usually refer to the
development, debugging and testing phases of the software
[1.2] and [3.4]. Few of these models have been applied to the
operational phase of the software. In [5] and [6]. software

errors in an operating environment are studied. Both studies

Th/s work wu suppor_d in par1 by NASA rrlmt NAO-I-613, In pitt by
the IBM CorpoTat/oa am/ in part by the JoMt SerTIc_ Electronics Pro_sm
(U.S. Army. U-q Nav"y. U.S. Air Por_) und_ conWsc2 auml_t N000|444-C-
0149.

found that at le_t 60% of of sy_.m errors were software

related, There has been little explicit study of
hardware/software reliability,In [6],software errorsrelated

to hardware In'oblen_in the operatingsyr_m are analyzed
and itisshown thaterrorsin the hardwaro/softwaro interface
are often fatal In [7]. • resource-usage/reliability model wu
developed from real data and it was seen that about 36% of the
detected errors (not necessarily system failures) were related
tosoftware problems.

With the exception of software reliability growth
modele, wh/ch have been val/dated with real data. there are

few. if any. models of software reliability in an operational
environment. Exception_ are the hardware and software
model dLscumed in [8] and a meamL,'ement-besod model of
workload dependent errors discussed in [9]. Both, however,
only describe the external behavior of the system and do not
provide L._dght into component-level behavior.

It is therefore highly instructive to develop • detailed
model based on low-level error data from a production sys-
tem. Toward thisend.inthe followingsections we constructa
e_or/recevery model for the MVS oporetingsystem. Software

problems of differing severity are modeled. Multiple errors
are also considered and the effect of on-Uric recovery routines
ig taken into account.

In the next section, we describe the error data and the

recovery chm'actarization. An overall model is developed in
Section 3. and in Section 4 we quantify key model characteris-
tics. Finally. in Section 5. we s_mmarize the results and

highlight the important conclusions of this research.

2. ]ErTer and lecovez7 Charscterization

In this section the collection and characterization of the
software error and error recovery data are discussed. A state-
tnn_tion diagram is developed to describe the diEerent error

and recovery states. This allows us to deter4nine the serverity
of errors and effectiveness of recovery.

2.1. Error _tion

Error data based on different causes were collected.

Information on software errorsisautomatically loggedby an
openting system module. DetaiLs of the logging mechanism are
described in [10]. Due to the manner in which errors art

detected in • system, it is possible that • single fault may man-
ires• itself as more than one error (an error burst). Depending
on the activity at the time of the error the di_erent manifesta-
tions may not all be identical [11]. The recovery system usu-
ally u-eat, these errors am isolated incidentL In order to
addrem this problem, particularly to ensure that the analys_
ks not biased by error records relating to the same problem.
two levels of data reduction [7] were performed. This reduc-
tion also allowed the grouping of similar types of errors. As a
result the software errors were classified into eight ciasmm.
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These eight cia_es are called error eye.us, since they may con-
rain more than one error, and are defined u foUowL

(1) Control (CTRL) -- incidents indicattn| the inval_ use
of control statements and invalid supervisor calls

(2) Deadlocks (DICK) -- incidents tndtcattnZ system or

operator detected endle_ loop, endless wait stats or
violation of system or umr-defined time limiw

(3) I/O and DataManqement (t/O) -- _:ident_ _Ucatm s
problems occurred during t/O management or during
the creation and procemins of data mrs

(4) Stomse bLtnet_.ment (Sbi) -- incidents indicating
l_rorI in _ I_IGI'I_Q &I1134P.41£iOIL/_tJOfl _ 0£

in vi:_wd mmnory "PPinl

(5) Stomp _.+ptio_ (SE) -- l_:id_m i+,4_tinl m_Pm-
ing of nonexistm_t or lnecclmibla memory locations

(6) ProlFammin$ Exceptions (PE) -- tncidenw indicating
program errors other than storage exceptions

(7) O_=e_s (OTHR) -- l_tdenus indicating that problem-
o_urr_ which do not fit the above ca_oriss

(8) Multiple Errors (MULT) -- incidents indicating more
than one typ, of the errors limed above

Table 1 _ the freqnencies of the dlHea_mt types of software
error event• defined above. The table shows that more than
one half (52J_) of software _ w_ I/O and data manage-
merit errors and anoth_ 11.4% of the errors were storage
management errorL A significant percentap (17.4%) of errors
were cia_fied u multiple errors and are specifl_Uy modeled
in the following sub-section.

Table I. Frequency of mftware errors.

Type of Errors
Control
Deadlock

I/O & Data Management
ProgramExertions
Storage Exceptions
Storage Management
O_ers

Multiple Error
Total

Fr_2u13_ 7.72

23 O.S4
144S 52.$0

65 2.43
149 $.40
313 11.35

66 2.32
481 17.44

2758 I00.00

2.2. Multiple Errors

A multiple e_-ror most of urn is due to • singio fault that
has non-identir_tt manifestations l_'ovokadby diffm-eat types
of system activity. Since the manifestations are not identical.
recovery may be complex. Figure 1 shows the state-transition
diagram of • multiple error developed from the data. The
transition probability from t'.ate i to state j, p,j. is estimated
from the measured data using:

observed number of transitions from state i to state j
P,J =

obmrved numbe_ of trtmfiUo_ from _at_ (

Thts figure not only illmnnta the possible interactions among
dt_erent software errors but also provid_ detai/ed in!orma-
tmn on the occurrence of tramntions. For example, if • pro-
gram ezception error (PE) occurs, there is about • 63% chance
flute • _.orage exception error (S_) wUl follow. Further. them
m more than • _0% cl_mce that one stonge error will be

0_

o.o4o_

.... 0.01__175

Figure 1. S_te-mmsition diagram for a multiple error

followed by another error of the same type ($2% for _torep

manegemm_t and also for stora_ exception). If we only focus
on thorn transitiosm with sllniacant probebllitim (l_.
than 0.1). the number of statm in Figure 1 can be reduced to

five. The mate-transition diagram for these active storm is
illustrated in Figure 2. Notice that a cyclk path is formed by
the I/O and dam .... .--_-,t (I/O) along with the two
diferent types of sxc_n steam (program exception and
.tonga .x_elnion).

o

0.1_24

,O.177A

_ 0.17_*

0.1 l_

0.62_4

0,1871
'2

Figure 2.Reduced state-transition diagram of a multiple error
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2_ Re_._ Mode_
Recovery in MVS is designed as a means by which the

systam can prevent a totalio1_ Whenever a program isaboor-
,,,sHyinterrupteddue to the detectionof an error,the Super-
visor gew controL If the problem is such that further procem-
ing could degrade the eymem or destroy data. the Supervisor
givescontrolto the Recovery Termination Manager (RTM). If

a recoveryroutinuisavailablefor the problem prod-am. RTM
gives control to this routine before deciding to terminate the
program.

The p_ of a recovery routine is to free the resources
kept by the falling program (if any). to locate the error, and to

request either a continuation of the termination procem or a
retry. Recovery routines aru generally provided to cover criti-
cal MVS functions. It I- however, the respousibility of the

inmallation (or of the user) to write a recovery routine for
other programs.

More than ono recovery routine can be specified for the
same program: if the latest recovery routine asks for a
termination of the program, the RTM can give control to
another recovery (ifprovided).This proce_ iscalled "percola-
tion." The percolation prtr.em ends if e/ther • routine imum a
valid retry request or no more routinm are available. In the

lattercase. the program and tte related subtaska tee ter-
minatod. If a valid retry is requested, a retry routine restores a
valid statususin§ the ir_orm,a_on supplied by the recovery
routine(s) and gives control to the _ In order for a
retry to be valid, the system should verify that there is no risk
of error-recurrence and that the retry addre_ is properly
specified. An error may have four possible effec_

(1) Retry -- The symem suoumMully recovered and
returned control to the probimn program.

(2) Task Termination -- The program and Its related sub-
tasks are terminated, but the system is not afected.

(3) Job Termination -- The job in control at the time of
the error is aborted.

(4) System Damage -- The job or task in control at the

time of the error was critical for system continuation.

Thus. job/tasktermination resulted in systam failure.

Figure 3 illustrates the steps in the recovery process. It is clear
that recovery can be es simple as a retry or more complex
requiringseveral percolations before a retry. The problem can

error / P, 'r- _ no \ "7 Job \
detected "_oh tiod retry '\ '-_ _rm )

Figure 3. Flow of recovery process

Table 2. Percentages of diferent recovery attempte
for a software error

No-
Type of error Retry Per_latlon Percolation

(St) (St) (St)

t _+KL, 78.38 21.62 0.0
DLCK 2.7g 97.22 0.0
I/O 93.49 • 6.51 0.0
PE 20.09 79.91 0.0
SE 28.09 71.91 0.0
SM 7.77 83.73 8-50
OTHR 14.89 83.11 0.0

also be such that no retry or percolation is possible. Table 2
shows the percentage for these di_erent types of situations.

For example, for storage management errors, approximately
8% of the cases resulted in a direct retry. 84% involved some
percolation and over 8st could not be percolated any further
(i.e. jolm/tash termination). The table shows that only in a
small percentage of the cases wu the problem un-recoverable
(no-percolation).

3. Software Reliability Model

3.L Overall Error/itecover3, Model

In this section we combine the separate error and

recovery models to construct a single overall model shown in
Figure 4. Note that a state (normal) represents the normal

Figure 4. Software error/recovery model
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system operation. The results of the recovery process are
citssifted into three different states (resume op. task term and

Job term) to reflect the severity of errors. The model thus pro =
rides • complete overview of software error usd recovery
from tn error occurrence to Its recovery.

3.2. Waiting Time DtsU-ibutio_s

Table 3 shows the characteristics of both normal and

_ror states in terms of their waitin8 times t. Note that the
duration of a single error is generally in the range of 20 -- 40
seconds on the average, except for deadlock and "others'. The
table aim show8 that the e_onJ not ¢lueified axe relatively
Insignificant since their durtUon is less than 2 second& Pro-
gram exceptions take twice as long u control errors (21
seconds versus 42 seconds). This is possibly due to the exten-
live software involvemmt in recovering from program excep-
tionL Figure 5 shows the density of waiting time in the nor-
e_tl operation state, i.e.. the density of the time to ester. This
density could net be fitted to a simple expommttal and was

Table 3. Characteristics of waiting times (seconds)

in normal and error states

_of

State o]3o

Normal 2757
CTRL 213
DICK 23
I/0 1448
PE 6.5

SE 149
SM 313
OTHR 66

MULT 481

Mean
wLittnt *tram

10461.33
21.92

4.7/
25.05
42.23
36.$2

33.40
1.86

175.59

Standard
deviation

32735.04
84.21
22.61
77.62
92.98
79.59
95.01
12.98

252.79

sad E,_o_
of mean

623.44
5.77
4.72
2.04

11.$3
6.52
5.37
1.60

11.53 _

0.2
Prob.

..... o ..................................

0.0
0 too 200 300

Duration Cminutes)

4OO

Figure 5. Time to error density

fitted to a multi-stage gamma density function [ (t). 2

m

j" (t) " Y- ajgCt; as. s,).

|si

m

where a,)0. _aj=l. and n is the number of stages. The

tml
g(t:a, s) is a gamma density function (with s the distance
shifting from the origin).

t The wat*lalltam*tot .stem I b tl_ _ 9me the inoam spendsin s_W
I b,for* maJUag• _rm_sltloa[t2J.
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g(t:a.I),[Ol t <#
(t--a)_'se _'_) t • a .

| l'(a)

where F(a) is a gamma function. Hence, the density in Figure
5 so obtained has five stages, givess by (tested using the

Kolmognrov-Smtrnev test [13] at a 0.01 significance level):.

[(t) O- 0.748 g(t: 2.1, --1) + 0.055 g(t: 0-5, O)

_. 0.0_9 £(t" 3-5, 3) + 0.030 |(t: $.0, 8)

+ 0.098 g(g: 5.0. 17).

3.3. itecover7 Time DImu-ibutioa

For the purposes of evaluating the time for recovery, we
assumed that each recovery mode takes a constant amount of
time. The overtU recovery time. i.e.. the duration of an error

eveat (or the waiting time in an error state), however was not
constant, since in error _veat can involve more than one

recovery attempt or my require more than one recoveryrou-
tine. The recovery _ was thea computed as the time
differencebetween the firstand the last detected error caused

by the emmo ev_mt. The dnrltlon of tn error went WaS mind to
measure the effectivene_ of recovery from this evmt and also

the severity of the error.

Figure 6 shows the recovery time densities for three
different typm of errors: I/O and data manqeaumt, storage
management, and multiple error_ Note that none of these den-
sities could be fitted by simple exponentials at 8a acceptable

level of significance- Thus. _ were fitted to phase-type
exponeatial density functions

It

' l(t)" _. a,g,(t).

tml

where a,•0. _as=l and n is the number of phases. The g_

function can be an expommtitt, multi-stage hyperexpommtial.
or muti-stage hypoexpommttal density function. The densitiea
in Figure 6 wmm fitted to the following functions (umed using
the Kolmogerov-Smtrnev test tt 1 0.01 significance level).

(I) !/0 : l(t) - 0.07825e "e'°_w" + 0-00035_'_°°3"m

(2) SM : f (t) - 0.1642_ "4_ + 0.030424_"_°_
+ 0.000663_ "e'°e_

(3) MULT : _r(t) m O.07&_"°_ + 0.002426_ "_°e_
+ 0.002163z -°'e°_s_

3,4. Summa_

In automat, the model developed explicitly quantifiea
the errorand remvery _ in the _ mftwara. We
note both the time to error and the recovery time distributions
in several key suttm cannot be modeled as simple exponentials,

Hence the eve:all process is modeled u 8 semi-Marker procesL

J We ebo t_ted*o fl_Pqpam$ by m_l ptum-tTpeexpoaeatl*l. 14owevor.
the flt_d ph_-t71_ exponutlal 8lvm us 18tilererme Oum tho mvltt-*tqe
gammadmud_/.
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Table 4. Mean time between errors

Freqeeacy
state count

CTRL 213

DLCK 23

I/O 1448

PE 63

SE 149

SM 313

OTHR 66

MULT 481

Percent MTBE

(_t) (hour)
7.72 37.83

0.84 351.58

32-'_0 3.56

2.43 120.15

5.40 54.08

11.35 25.73

2.32 125.84

17.44 16.75

Table 5. Mean recurrence time of recovery

.25

L No-Percolation [1 241.43

0.2
Prob.

0.O
0 2 4 6 8 l0

Duration (minutes)

(c) Density for multiple error state

Figure 6. Recovery time (error duration) densities

Further. the semi-Mtrkov process is irreducible with the

resume op (resume operation) state, the job term (job termina-

tion) state, and the task term (task termination) state being

recurrent.

In the next section, we analyze the overall model to

determine key software error characterimies. The mean time

between different types of errors is evaluated along with

model characteris_ice such as the occupancy probability of key
error states.

& Model Behavior

4.1. GeneraI Char_

By solving the semi-Markov model, we discover that the

rues.rated software system made a transition, on the avenge.

every 43 minutes and 22 seconds. Table 4 lists the mean time
between different software errors (i.e., mean time between

errors) and Table 5 shows the mean recurrence time for

recovery processes. By examining the mean recurrence time

for I/O and MULT errors from Table 4 and comparing them

with the mean waiting times in Table 3, we find that although

the I/O errors occur about 3 times as often as the multiple

errors, the system spends nearly 6 times longer in recovering

from a multiple error (25 seconds for [/0 errors versus 175.6

seconds for multiple errors). This is because recovery from a

multiple error involves several different types of recovery

attempts. In addition. 63% of the multiple errors invoke

percolation compared with the fact that 94% of the L/O errors

recovered through retry (see Figure 4).

4.2. Model Probabilities

Given the irreducible semi-Markov model of Figure 4. the

following steady state probabilities were evaluated. The

derivations of these measures are given in [12].

(1) transition probability (_rj) -- given that the proce_ is

now making a transition, the probability that the tnn-

sition is to state j

(2) occupancy probability (@j) -- at any instant of time

the probability that the process occupies state j

(3) entry probability (er) -- at any instant, given that the
process is entering a state, the probability that the pro-

¢e_ enterz state j

(4) mean recurrence time (_)) -- mean re_lrr_ce time of

state j

The model chancteristics are summarized in Table 6. A

dashed line in this table indicates a negligible value (less than

0.00001 probability). From the occupancy probability.@, of
the normal state in Table 6(a), we see that i{_ about 99.3% of

the time the software sys_m im operating normally, i.e.. only
0.$% of the time the system detscte errors. This indicates that

the reliability o_ the measured software system can be as high

as 0.995. The table aLso shows that. of all possible transitions

made, 24.73% are to an error state (obtained by summing all
the _r's for all the error states) and another 25.79% are to a

recovery state. Since it was seen earlier that a transition

occurs every 43 minutes, we estimate that a software error b

detected, on the average, every 3 hours. From Table 6(b). we

notice that although an error is detected almost every 3 hours.

a successful recovery (i.e. results in resume op) only occurs

once every five hours, i.e., nearly 43% of the errors result in

task/job termination.

Multiple-error events formed a significant category on

their own. Since this type of event involves several error

types and results in considerable overhead, it is analyzed

sepanteiy in the next section.
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Table 6. Characteristics of mftware error/recove_ model

I I I
I"'' I I p.' sz l o+rmmM' +i

11" II 0.Z474 II 0.01_I I o.oozo I o.lz._ 1 0.oo+0 I 0.01,.+4 1 0.0Ut I _ I 0.043t I

I ® 10..m 10.ooo,, " 10.0o,+..+10.o=o,.10.ooo,., 0.oo0..I " Io.oo+.,,.,l

Ca)

bcover T rata Ituult

Measure Retr_ Percolation No-hrcolatlon itmmam op Task term Job tlrm

0.1704 0.0845 0.0030 0.1414 0.0712 0.03484.2.5 8.55 241.43 :5.11 10.16 20.74

* - in houz

• (b)

Table 7. Characteristics of a multiple error

Normal

Mzamu_ mare CTRL DICK I/O

0.1767 0.0327 0.0041 0.143!0 0.0648 0.0130 0.3004

O.O0.q_ 0.0010.5 0.00015 0.004660.o4m) 0.2647 1.1126 o,o.q_

P! SI _ OTHIt

0.1423 0._57 0.1360 0.0617
0.0Lr/ 0.2202 0.2717 0.0462
0.00473 O.O09JO 0.00437 0.00191
0.0.517 0.0Z92 0.0_4 0.1401

• - in hour

4.3. CImr_'mrimm of A Multipls

In Section 2 we Imtm_l out that ebout 17% of mftw_t

errors were multiple errors. We aim noticed that the multiple

errors mostly consist of I/0, morale, or program errors. A

stron$ connection betweess program and storage exception was

seea in the occurrsace of • multiple error. Table 7 lletz the

characteristics for a multiple error and wu obtained by melv-

in S the semi-Markov model described in Figure 1 with • zero

waiting time in the normal state (Le.. given a multiple m-rot

occurs). From Table 7 we me (from lr. transition probability)

that nearly 305 of the crsnsitiona are made to the storage

exception state when the protein emm.s • multiple error mode.

Once in • multiple error mode. • storage exception error occurs
every 1 minute and 45 seconds (_ - 0.0292 hours in Table 7).

while the average duration of multiple errors is about 2

minutes and 56 seconds _ (_ - 0.0489 hours, the recurrm_

time of the normal state). As soon as am entry iato a multiple

error is made. consecutive errors are detected almost every 31

seconds (by taking the reciprocal of the sum of all entry pro-

babifitim • in Table 7).

Note _t the 8vst_St dlsr&flon of & multiple error lnmUetmi here fz_n
the model is very ctme Io the mmm duration of • m_lllple erzor th81 is
ob_/aed from ttm _ml _t_ lk_l ha Tab" 3.

4 This isImr_ly due Io the f,_'tUuttfor a mm_i-Marltovpmass ttw

u_uitioa pmbabittt7 at _y time iut4nt, r+j It . wl_tr_ lr I is

the trM_|tMa probabiUty to s_atei at the iast4al whms _ psm:ml k la the
stssd y s_, PlJ b t/to mndftto_ Wa_tiflost probability from s_ _ lo s_t_
J, fl j k me me_ holdtn 8 _tme teem e_ _ to stets j. and _I' is me mum
holdi_ tiara of tt_ pro_m_

There are several in_ characteristics of multiple

errors which cem be derived from the model of Figure 1. For

exampl_ if we want to know the prol_bflity of • storage

exception error _iv,m an 1/O error, we can rTtlutm it by the

multi-step tramfition probability to Um SE state from the I/0

state. _ turns out to be very small, ouly 0.0076. However.

we find that the probability of an I/O occurring given • SE

occurs at ray tiara instant, ia as high as 0.668. _

& Conclusten

In this mudy. we have developed a semi-Marker model

to describe the error end recovery processes in the MVS sys-

tem. The model ia 10mind on real m-mr data collected during

normal system operation. The mmt-Markov model developed

provide8 a quart--.on of system error chsncu=is_cs and

the interaction between difermt typm of errors. As an exam-

ple, we provide • detaiiod model and analysis of multiple

errors, which comrrAtu_ approximately 17% of all mftwtrs

errors and result in co_ overhead. It is su_es_d that

other sn3_leml be simUarly analyzed and modeled m that a

wkle range of realk_ nmdek of software reliability in an

operating environment are available.
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ABSTRACT

In this paper, a methodology for automatically

detecting symptoms of frequently occurring errors In large

computer systems is developed. The proposed. symptom
recognition methodology and Its validation are based on

probabillstlctechniques. The technique is shown to work

on real failure data from two CYBER systems at the
University of Illinois. The methodology allows for the

resolution between independent and dependent causes and,

also quantiEes a measure of the strength of relationship
among the errors. Comparzson made with failure/repair
information obtained from 6eld maintenance engineers

shows that in 85% of the cases, the error symptoms recog-

nnzeclby our approach correspond to realsystem problems.

Further, the remaining I5% although not directly sup-

ported by field data, were confirmed as valid problems.
Some of th_ were shown to be persistent problems which
otherwise would have been considered as minor transients
and hence ignored.

Keywords: Error records,persistenterrors, failuresymp-

toms. probabilistic techniques, automatic recognition.

1. !NTRODUCTION

The diagnosis of the causes of persisting errors in

computer systems is dl_cult because the underlying faults
are complex and may affect different parts of the system.
The system usually detects the effects of the faults as

many l_olated errors. An incorrect diagnosis leads to

improper recovery management which ultimately affecLs

the lntc-grlty of the system. For the diagnosis to be
effecUve, It Is imperative that the system be able to relate

errors occurring In different parts or different times.

When a service engineer trtcs to rt_:tlfy a fault, he or

she studies the error log for the period during which the
fault occurred. Though the system may record the effect

of a fault a.s many isolated Incidents. the service engineer

recognizes the different error entries as ._ymptoms of the
same error. This recognition of related error records ts

ba_l on the service engineer's observance of some similar-

Ity. e.g., a recurring pattern among the error records.

This paper proposes a methodology for recognizing

symptoms of severe errors In large systems. The goal of
the methodology is to automate and formalize a process to

relate errors occurring in different parts of a system. The

method was dcvelopod after several years of study of sys-
tem error logs and through close consultations with
maintenance and held engineers from several manufactur-

ers, The approach uses the system error rate to Identlfy

error records among which relationshipscan exist. Proba-

balistictechnlques are then used to validate and quantify

the strength of relationships among error records. The

approach takes as Input the raw error logs containing an

entry for each error detected as an isolated event by a
computer system, and produces as output symptoms
which characterize persistent errors.

The methodology for automatically recognizing the

error symptoms Involves three steps:

(1) The recognition of error records among which rela-
tionships can exist,

(2) The determination of the existence and validity of
relationships among these records and

(3) The quantification of the strength of a relationship if
one is found.

The method is illustrated on error data collected from two

large Cyber systems used on campus at the University of
]ltinois at Urbana-Champalgn. The approach Is simple In
concept and hence easy to apply and simple to use. Since It

is not based on any specializedcharacteristlc_of the Cyber

systems or the error logs,it isexpected to be applicable to
other systems as well. Analysis of error data from two

IBM systems Ls now In progress. Comparison made with
faalure/repalr Information obtained from field maintenance

engmeers show_ thai in 85% of the cases, the error symp-
toms recognized by our approach correspond to real system

problems. Further. the remaining 15% although not
directly supported by held data, were conhrmed as valid

problems by the engineers, lnd_[, some of thc_¢ were
shown to be persistent problems which otherwise would

have Ix_en considered as minor transients and hence
ignored.

I.IRelated Re,earth

Two studies which offer insight Into the character=za-

tion of errors by their associated symptoms are [Vclardl

84] and [lyer 8b]. Software errors In a production

environment are analyzed in [Velardl 84], and permanent
CPU errors and their relationship to workload are dis-
cussed In [lyer 86].

C H 2,345-71861000010797501.00 © 1986 ]E E E
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Re_.arch closely related to that ckscribed In this

paper (symptom-based recognition) Is that of [Tsao 83a]
and |Sanders 85]. Tsao's work Is motivated by the fact
that a module exhibits a period of (potentially Increasing)

unreliability before final failure. The approach attempts to
analyze trends In errors by first grouping errors occurring
within a short period into Tuples. Heuristics, specific to

DEC system error logs, are then used to determine If one
tuple Is similar to another |Tsao 83b1. As the author
points out, two Tuples may be found to be Identical by one
algorithm, not Identical by another. The "result of the

analysis is a small set of tuple types, each of which are

expected to contain error records pointing to the same

cause. The approach assumes that all error records In a

Tuple are related.

In [Sanders 8_], a technique which uses both complete

and partial recurrences Is proposed. The technique is simi-
lar In concept to that proposed by Tsao. Instead of using
matching algorithms, a software table Is used to quantify

system organization. The software table Is aLso used to

capture both partial and complete recurrences as well as
similarities among error groups. It was found that nearly
15% of the groups (similar to Tuples) contained a collec-
tion of unrelated error records, I.e.. random groups.

An alternative approach to the above is called

"structure-based* diagnosis. The development of a scheme
based on the description of the structure and function of a

system is described in [Davis 82]. Similar diagno6tic

_chemes have also been propo_i In [Shubm 82] and

[Gene_ereth 82]. Another approach called'violated expec-
tation" ([deKlecr 7b] and [Brown 81]) has also been pro-

posed for troubleshooting. This approach looks for

mismatches between the valut_ expected from correct

Olx.ration and three actually obtainc_L Whenever possible.

the approach Identifies a specific component that may be
faulty. All these diagnostic systems have been shown to
work on modules within a cumputer system, it I_ not clear

how they will work when a whole computer system is

taken into account.

In [lyer 8_]. the analys,s shows that the system Is
mo_t vulnerable to errors in the hardware/software inter-

face. It is not clear that a structure-_ diagnosis can be

fully successful under such circumstances. A structure-
based diagnostic system may diagnose the hardware fault
In a limited domain, but the chances are that complex

faults (e.g. hardware-related-software errors) may be

detected as more than one error. In thl_ context, it becomes

Important to study the relationship among errors that
occur within a short time.

In our opinion, both the symptom-based and

structure-based approaches are still in their Infancy.
Hence. further research In both areas, particularly practi-
cal studies, needs to be done before either of them can

generally be implemented.

The approach proposed In thL. t-per is geared toward

determining the t_mptoms of persistent errors In large
systems by probabllistlcally relating the different manlfes-

taUons of the same problem. The approach is naturally

geared toward differentiating between transient and Inter-
mittent errors. To the authors' knowledge, there is no

methodology that Is able to do this at present. Further,

the approach can abo evaluate a diagnosis by analyzing tt
diagnoses made in the past, I.e.. the goedne_ of syste:

diagnostics. A methodology that quantifies the sympton
associated with related errors by determining the relaUol

ship among detected errors is essential for this purpos
The development of such an approach is discussed In tl

following sections.

2. SYSTEM (_NF1GURATION AND ERROR
MEASI.rRF.Mb'brr

2.1 System Configuration

The system studied consisted of two Control Da_
CYBER 170 systems maintained by the Computer 5crvtc_

Office at the University of Illinois at Urbana-Chalnpatg
The two machines, a model 174 and a model 175. are cot

pied by their disk system. The two machines run indepeL
dently but share resources such as tape drives, etc. A
Interlock table Is maintained for use by both machines

prevent deadlock arising from conflicts over shart
resources. Details of the system configuration and tl

error detection are given in the Appendix.

2.2 Recognition of Error Groul_

A cursory analysts of the data showed dupllca

entries within a short Ume period describing the san

error condition, it was decided to coalesce error recor,

that report the same comtltlons (I.e.. same type of err,
and same machine state) to avoid multiple records refe

ring to the same error. This process Is referred to as err

cheering. Details of the clustering on the Cyber syster

are given in [Sridhar 8,5]. A visual examination of t!
clustered data showed the existence of sets of cluste

occurring within a short time Interval. The clo_e tim

proximity among some clusters means a substanti
Increase In the system error rate during that period. T

high error rate introduces a suspicion that the errc

occurring during the high error rate period may Ix. relate
I.e.. different errors may be due to a single cause, to mul

pie but related cause, or to multiple and lndepende

eausL...s.

The high error rat_ periods referrt_l to above e
called error groups, and are formed by grouping _,11 eri

clusters occurring within a small time interval of ea

other. (This Interval was chosen to be f, fteen minute

Analysis showed that the results were largely lnserutiU
to variation in this time Interval between 5 minutes anC

hour. It will be s¢+:n In r_ctlon 4 thai relationships amo

error records not captured by this choice of time inters

will be captured during subsequent analysis. I The prima
difference between a cluster and a group Is that clusb

contain only occurrences of the same error (same err

type and machine state), whereas groups conU

occurrences of different errors (different error type

machine state}.

I _ Cl_Dlnl Of UIdt tllllllVll i II_IO_OUl U) ICI'IO01,Ul I I ltaflm| I 1o1411 Lll"

m_*l eptunmll,olh A lame startml lintel will m4ma that tl_ al_lytia will I

s _ml.. um_
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As an illustration of the value of grouping, con.Uder
the _erles of observations In Figure !. Looked upon singly.
these would appear to be separate occurrences of different

single bit memory errors. Yet. when the errors are com-

blnt<l into an error group, apparently all of them occur
within bank 4. Also, the syndrome, or the problem bit. is
the same for all the observations. This poinLs to a problem
within bank 4, and not to three Isolated problems occur-

ring within three different memory locations. Specifically,

It refers to a problem that affects one particular bit of the
word -- which means the problem Is even further Isolated

to the module. The probable causes now are confined to

tho_e that affect only one module -- such a.s a faulty

driver or path. in general, of course, the relationships will
not be so obvious, hence the need for a probabilistlc metho-
dology proposed In the next section.

In summary, we start with the error log hie and at

the end of prcproce_sing we have reduced isolated errors to

sets of clearly demarcated, periods of high error rate.
These sets of error records are called error groups. Error

groups Ic_..ntlfy periods of high unreliability in the system.
The irrequency of error groups demonstrates the need to

relate errors occurring in different parts or times, i.e., glo-
bal diagnosis. The tbf of the system increases considerably

when groups are treated as single events. Thus. clearly, if
the system were able to relate the errors In these groups It
would be much more reliable. The determination of the

existence and strength of relationships among error records
in a group Is described in the next section.

3. RECOGNITION OF ERROR PA'ITERNS

Errors In computer systems (x'cur at various times

and in many different locations. Often, the most severe

errors are hard to diagnose tx<ausc of the varied and seem-

ingly unrelaled symptoms associated with them as they
occur in different locations and at different tlnie:g. A suc-

cessful diagnostic technique should be able to relate these

errors in much the same way as a service engineer, through
past exlx'nence, identifies a set of error records as the

symptoms associated with a particular problem. The goal
of this re'_.arch was to automate and formalize a process to

relate errors occurring in different parts of a system.

This '_ectlon describes the key aspects of such a

methodology, and the succeeding section gives exampl¢_

illustratingthe use of thisapproach. The obJeCtives of the

symptom recognition strategy are to s'tart with the error

log file, consisting of entries for all the errors detected as

isoluzed errors by the system, and to produce as output

symptoms associated with related errors that are being
diagnosed =¢ Isolated and unrelated errors.

The symptom recognition methodology Involves three
steps:

( I ) recognizing candidates among which relationships can
exist,

(2) checking to see If a relationship actually exists among
these candidates, and

(3) then estimating a measure of strength of the

evaluated relationship (If a relationship do_ exist).

The Erst step, i.e., recognition of potential candidates for

further analysis, Is the tlme-]x_sed grouping dr-scribed in
the section 2.2. The second and third steps which are now
discussed are recursively used at three levels of validation.

At the first level, the relationship among the error records

within an error group Is evaluated; I.e..-we determine

whether there is a valid probabtllstic relationship among

the records in a group or whether they are simply a collec-
tion of unrelated records. The second level looks for

inter-group relationships because the same cause(s) can

give rise to multiple error groups within a sh.ort period.

The third level looks for overall relationships in the entire
data. Each level of analysis Increases the resolution of the

data and adds more certainty to the results. At each level,

a measqre of strength of the evaluated relationship is

quantified.

The next subsection disc _=_ the probabLILstic valida-

tion procedure; the subsequent sections discus= the use of

this procedure at different levels of analys_s.

3.1 Probabilistic Validation Criterion

In this subsection, the technique us_ recurslvely to

validate and measure the strength of relation.ships among
the error records at various levels is descrilx_L

This technique examines the different records betw,L._n

which a relationship may exist and determines whether a
valid relationship is po_ible among them on a probabllLst|c

basis, ba.sed on the past data. In formal terms cort_ider the
probability space of n error records A =. A =. • • • . A.. L_t
P(A , ). P(A l ). • " " .P'(A. ) be their r,-_p_tive individual

probabilities calculated from the data. I.e.,

GRPNO TIM_

REC- ERR-
_S TYPE ERR SYN Q(JAD CSU _ OiIP TYPE

129 23SEP:I4:3S:18 3
129 23SEP:I4:38:IS t
129 235EP:I4:38:A_'-' 1
129 23SEP:14:38:18 2

129 23SEP:I4:38:lS 2
129 235EP:14:38:18 I

0003 PARITY 52 1 0 4 2 Ml_i
000:3 PARITY 52 I 0 4 :3
000:3 PARITY 52 I O 4 O
000:3 PARITY 52 1 0 4 3 M]_4
000:3 PARITY 52 t 0 4 2
000:3 PARITY 52 1 0 4 0

Figure h Sample of Grouped Data
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Figure 2: Error Log Entry for Memory Error

P(A4 ) =
o o/ occur o/ A_

Y_ • o/ oc_=_, o/ A,
lui

Then, P(AI )" P(Az)" " " " P(A. ) is the probability
that A i .Az. "'" .A. will occur together, a_umlng they

are independent. Further, let P(A =.A a. "" .A. ) be the
joint probability of occurrence computed from all the joint
occurrences of A,. A _.. • • . A. in the error log, I.e.,

P(A,. ... .A, )=

If

# o/ _ occur, ol (A,. '" .A,)
, =a

T" • ol occur, ol A,
is|

P(AI )" .." " P(A, )<P(Ai. " .A, ) (3.1)

then it Is reasonable to assume that the joint occurrence of

A,..- .A, is not random. A measure of the strength(S)

of the evaluated r(.lationship is given by the ratio

P(A t. "" .A, )
S=

P(A i )" "" " P(A. )

What A=.Az, '" .A. stand for depends on the

level of analysis:

(I) When we are attempting to validate the relationshgo

among the error records in an error group,

A I. "" .A. stand for the individual error records

within the error group

(2) When we are studymg the relationship among the
error groups in an event. A,..... A. stand for each
indwldual error group. Smce the existence and

strength of relationships are evaluated prol_bllisll-

cally, the approach isnot constrained to spt_:ibcarchi-

tectures or system conhgurahons.

3.2 Validation at Group level : Inter-Record Relation-

ships

Re_all that error groups r" _resent high error rate

ix.r=(x/s during the operation of the system. The high error

rate introduces a suspicion that the error records within an

error group may be related. It Is. of court, po_Jble that
the rise in error rate is just a random Incident. To distin-

guish between these two ixtssibillties, error records In an

error group are analyzed in three different ways to deter-

mine if the records In an error group have a valid relation-

ship.

Complete Analysis

The hrst is referred to as a complete wmly=is. "l
probabilistic validation procedure di_u_ed in the previ(

subsection Is applic_[ to all the rt_ords In an error gro
i.e., the Individual and the joint probabilllic_ of all

error records in a group are computed from the data. if
the error records in an error group are found to be stati:
cally related, no further analysis is done on that er

group.

Subset-Based Analysis

If error records in a group are found not to be rela

through a complete analysis described above, then it E.
be that subsets of the original error group have valid re

tionships. Different combinations of error records Ir
group are then analyzed to determine the existence of va

statistical relationships among them. For example, if th

are three records (A. B, C) in an error group, the subs

(A. B). (A. C) and (B, C) are analyzed and Equation (3
is used to determine the relahonship among the er

records in these subsets. This approach is referred to a

sub_t-AJaed analysis.

Truncated Analysis

If no relationship is found with complete or subs

ba._l analysis, a third analysis bas¢_ on truncated recoi

is carried out. In this tiN'p, a few heldti of the error gt_oI

are masked from the analysis. ]'his is Ix.st illustra'

using the format in Figure _'2. which refers to the log o

memory error.

The fields cha._=,-, quadrant, bank and chip dc_cr
the Iocat,on of error. It may be that a statistically va

relationship ext_ts at the bank level (say among a f

banks) and that the chip Identity nf the error records m

thwart the recognition of the vahd bank level relati(

ship. 2 Thus. when the chip idenhly is dropped, we ,

attempting to determine the existence of statistically va
relatlonsh,ps at the b_nk level. Note that when :

analysis is carried out with truncatt_J r_<ords, m,

ro;ord.5" can enter the probability spat(,. Thus. the b=
result can be sul_tantially differen! I rom the otigi:
result.

II _'tWll the chip la¢ll|ll)' m a_l_ tlkfll into account. _¢ Ic¢ eslent=lly

Ing tO aeltglfll_ il Ill'Oil O_'_ulrgiAg liP, dl_c/eltl Chlpt lithlN I il_fl prrlg¢

tlMl_tKal|_ geblled 01 Iol.

I TIw Mine II_r, skalg lrlSlyil_ 1_4y IK taller'led OUt h) il41ltllg flOII1

higl_sl I¢v¢1 ot' rt'_mlulaon, i.e.. II1¢ hltt &,rid ol the if(old. "]1_ ¢'h*p idelh_

masked and lJw 6nMyt_s is (drt_d OUt; t/_a tl_r b4nk i_¢Niil_/ Idl masked 6e,,

On until II l¢141001Uh,p S,S Ioulld or Until Ill lh¢ GcIAt art m|$ged. 'Thu IIKoII

_,11 Ilqull¢ r.otl fun time. Th_ I_qglwr r_lutmn oll¢_cd by t11= II_ll_l

¢ctucv_d by lull_qu.n'i .naly_.



The fields to be masked are determined as follows:

starting from the lowest level 04"resolution, I.e., the Ix-_In-
ning of error records, the records in a group are scanned
until the first held wherein they are di_simllar is found.

All the fields beyond this field are masked from the
analysis. ]:or example, two records with the format shown
in Figure 2 may have identical felcts up to the chassis. The
quadrant is the fist field with non-Identical values. Then

the felds bank and chip are masked from the analysis. 3

This three-tier analysis eliminates error groups con-
sisting of records wlt,t no relationships, i.e., random errors,

from further analysis. The importance of this analysis is

underscored by the fact that in our analysis (shown In sec-

tion 4) over 25% of the groups were rejected as random

groul_ The validation of sub_,L_ elm_inatcs stray records
prc_nt among related error records in an error group, and

the validation of truncated records captures non-obvious

relationships among error records. Thus, the original error
groups consL_tlng of records among which relationships c_m

exist is refned to error groups consisling of records among
which relationships do exist.

In some cases, the stray record does not invalidate a

group. It merely reduce_ the strength of the evaluated

relationship. Consider three records in a group, say A, B
and C. A and B may be related and C may be the stray
record, The strenglh of the relationship computed by

analyzing A and B may be much higher than that obtained

by analyzing A, B and C. It is ix_slble to perform the

three-tier analysis in all the cases and accept only the rela-
tionship with the highest strength. Such an analysis is.

however, very computer-Intensive and, therefore, was not

pc.rformed here. Stray record_ are ultimately eliminated

in subsc_luent analysis.

Relationships can extsl across error groups; i.e.. a sin-

gle cause can give rise to a persistent error and thus foster
multiple error groups within a short time. Therefore, it
I:x:comes necessary to examine the val|dated groups for

rater-group relattonshJp=_. The methodology to recognize
rater-group relaUonshlps is descrilx.d in the following sub-

_ections.

3.3 Validation at Event Level : inter'-Gro_p Relation-

ships

The pc'r_lstence of a single cause(s) and the po_ibHity

of stray error recor'cL_ among related error records in an

error group motivate the second level of analysis. I.e..

recognition of related error groups and the elimination of

stray error records from error groups. 4

To analy;,e the relationship among error groups, it

becomc-_ nc_e,_,;ary to introduce the concepts of events and

symptom,-, and symptom _._. An event =s defined as the
collection of error groups occurrtnR within twenty-four
hours and having at least Iwo error r¢_c ','.;in common. A
symptom is defined as a collectmn of statistically related.
non-redundanl error records that are common to most of

the group_ in an event. A sympton_ _.t a._._laled with an
event Is defined as a collection ol symploms thai bc_t

dc_'riix, the event. Symplom _.t=, are recognized by
analy_ing the error gn_ups in an event.

4 NOL_LT _1_ • gf_f4_¢ntltlvc |¢t'gn [or $1T4_' /TrOt fqr_:Otd&,

When an event has just one error group, the statlsU-
cally related error records within that error group form

the symptom set assoclated with that event. When there is
more than one error group In an event, the symptom set Is

formed by intersecting the error groups within the event.

The error groups are taken N groups at a time, N-I groups
at a time, and so on down to (N/2), or to the next higher

Integer number of groups. The Intersection of such
different combinations of error groups yields different

symptoms that are found In these groups. It also elim-

Inates any stray records that occur in a few of the error

groups In an event,

Once the symptom set associated with an event is

derived, Equation (3.1) Is used to check for the relation-

ship among the different symptoms. ]f only one symp-

toms Is extracl_ from an event, the event Is probably due
to a single cause. When more than one symptom is

extracted from an event, the probabllistlc validation pro-

cedure is used to determine if the different symptoms are
caused by related or independent causes. For example, if

two symptoms, say A and B, are extracted from an event.
and if the symptoms satisfy Equation (3. I ). i.e.,

P(A) • I_B) < P(A,B)

then the event is due to multiple but related causcs, and

the ratio

P(A,B) / (P(A) • P(B))

quantifies the strength of the relationship between A and
B. If

P(A) * P(B) > P(A,B),

the event Is _:au_,ed by multiple and independent causes.

If two independent causes exist and persist simultane-

ously, 5 the extracted symptoms will consist of confusing
set-, of error records. This Is because all or most of the

groups in the event contain records referring to both

cau._'s. When such groups are Inte_cted. symptoms asso-
ciated with both are extracted as though they were related

causes. The records due to one cause are strays with

respect to the other cause, and some technique is necessary
to discriminate between the Iwo. A higher level of

analyms, nece'._.'_ary In deal with such occurrences. _s

de_:ril_.,d, in the following s_,ction.

3.4 Validation at Sulx'r'-Event Level : Inter-Event Rela-

tionships

The po_lbihty Of the pr¢_nce of stray records in all
of the error groups in an event, and the need to capture

relationships miss¢_ by the choice of twenty-four hours as
the time interval while forming events, motivate the next
and the last level of analysis. I.e.. determination of inter-

event relationships. [:urther. when the cvenls rt-sultlng

from the same cau._(s) across the entire data are analyzed.

the stray _¢orcis occurring m one particular event Ix.come
visible. This allows for the resolution betwet.n Indel_:n-

dent and del_'nder_l (related) failures.

Three simple rules are u._<l to rcc_¢n=_e relaled
events and to form super ,.v_wls. Two events arc groulx<l

Into a super event If they _Hisfy any one of the foJlow=ng

I Sl_'h cOllditaolU O_¢Ut rar¢|y, but they do _Uf.



criteria:

(I) They have at least one symptom in common

(2) A symptom of one event is a sub or super set of at

least one symptom of another event

(3) If they are single-group events, then they have at
least two record= In common.

hnportantly, there is no time restriction when forming

super events.

Next. a set of super symptoms, which are collections
of symptoms found In common among two or more events

In a super event, is generated. The procedure Is exactly the

same as for events except that Instead of taking groups, we

take events described by the symptom sets. The Intersec-

tion operation among the events yields symptoms found In
common among these events. The non-null r_ult of each

lnter_:tion operation forms a super symptom for the

ciated super event.

Some super events have jU.SI one super symptom asso-
ciated with them. while others have more than one associ-
ated with them. To determine whether the different super

symptoms associated with a super event are related, (i.e..
whether the super event has a single cause) we use the

probabJlistlc validation procedure described tn Section 3.1.
if the different super symptoms are not related, then the

super event is due to multiple and independent causes.

When a super event is due to multiple and Indepen-
dent causes, the number of such distinct Independent

causes may be determined as follows: the super symptoms

are considered in different combinations, taken N-I super

symptoms at a time, and so on down to 2 super symptoms.

The prob,=bilistic validation prcxedure is applied to each
such combmaUon. This analysis determinc_ the relation-

ship within a particular subset of suix'r symptoms associ-

ated with a super event. If the sub_.t Is found related. It
is counted as one cause. The analysis is continued until all

Independent causes associated with a super event are
found.

Recall that the goal of this p_per is to automate the

procc-_ by which a service engineer relates errors occurring
In different parts of a computer system. The super symp-

toms derived from the error log file not only consist of
._.ts of related error records but also quantify the strength

of their relationships. Whereas the service engineer usu-
ally _cans the error log pertainmg to the short period dur-
Ing whlch the error occurred, rtxognizes related error
rt<ords and makes a local judgemcnt, the methodology

_cans all the errors that occur in a system and Is capable of

making a global judgement. The application of this t¢_h-
niqu¢ to real data Isdi_cu._t_l in the next section.

3.5 Summary

The methodology describe¢ t In this section estabhshes

that It is possible to build a system thai will relate errors
occurring In different partsdttmes in a computer system or
when two unrelated caus_ occur simultanc_3usly In a sys-

tem. It has been shown thai the proposed methodology

allows for re_oluUon between them. Some cau._c's persist
for days or even months. While such causes persist, other

Independent errors can also occur in a system.

Three levels of validation are used in a recu

fashion. In the first, all groups (high error rate per
are examined to determine If they contain related rec

Next, the validated groups are examined for inter-_
relations (events). Finally, the events acro_s the (

date are examined for inter-event relationship. 6

The symptom sets obtained _[ng thIs method,

Imply that If one error within a symptom set occurs,
related errors within the symptom set can be expect

occur. The strength of the relationship says how like
Is that related errors will follow.

The number of levels of analysis can be varie_

higher resolution. That Is, If a system is highly error- l

and a grouping of errors occurring within fifteen mh
leads to coalescing of unrelated errors, then this grot

time Interval may be reduced to, say, fare minutes or
The next section illustrates various facets of this appt

by applying It to determine the error symptol,_ if

CYBER system.

4. EXAMPLE.S OF ERROR SYMFFOMS

This secUoa illustrates the various stages of

analysis involved In the automatic recognition of

symptoms from error log data. A summary of the ana
is given hrst. Then three examples are provided, illus

ing the three levels of analysis, namely, the group, (

and super event levels. Some features of the prol
methodology not Illustrated by the first example are
trated in the last two examples.

4.1 Summary of the Analysis

Table 1 sums up the number of groups, events and :
events derived from the error logs of Cyber 174 and (
175 machines. Note that 67.1% of the Cytx.r-174 g

and 27.5% or the Cyber-175 groups were rejected as

dora groups. Mo_I Of the super events In both the mac
wcrc due to single or related causes. In all. there are b
distinct cau_-s Ihat result In severe errors on the C

174 and thirty-thr_¢ cau.%-_ on the Cy I_:r- 175.

TABLE I :

FREQUENCY OF GROUI_. EVENTS AND SUPER EV

I Cyber 174 [ Cyber 17
I I t
I B of grou_ [ 85 t 142

# of group role<ted I 57 I 3q
# of events t l

I i

I lq
i 0

I

1

I due to single cause I 53due to multiple causc,s t 2

j ¢ of super events

I due tosingle cause I 15 t 33due to multiple causes I 0 [ 2

•NOlf t_ll ¢4¢h kv¢l Of 8l_lJt_l_ &ddt |0 1_ mformltma Ill)_rfctJ *

out hrveb, tar. • group v61td61ed It tl'u¢ Itoup |¢t,'t'l cannot b¢ wejt.ctcd I

quell lllll_lll I)MI _ll ltaa otlwl i¢111111 Ii.oMpi.

Is02 OIlMGNNAL P._GE ;S

OF POOR QUALITY



There are 85 error groups In the Cyber-174 data and

142 groups in the Cyber-175 data. These, numbers quan-

tify the periods of highly unrellable operation during the

operation of the computer system. During these hlgh error
rate period.s, many of the system resources may have been
utlllzts.[ In recovery measur(_.

4.2 Cybcr-174 Super Event with Multiple Super Symp-
ton_

This section illu_trates the variou_ facets of the pro-
PO_ methodology. This particular example is chosen

bc_.ause it Illustrates all the important steps and the major
problems involved in the automatic recognition of symp-
toms.

Figure 3 shows a super event consisting of four
events, ttere all events are _lngle group events. As an
example of analysis at the group level, we consider the

group of error records In the second event, marked EVT 2.
, In this group, we find four types of records, I.e.. those

records With ERRTYPF./IocaUons corresponding to El ....
'3/0-0-7-1, $/i-0-l-2, and S/I-0-5-0. Using the meU_cl of
Section 3.1, the strength of this group was 76.50. Since
this strength is greater than l.O, the records exhibit • valid
relationship within th_ group, so subset-bas¢_ and trun-

cated record analyses are unnecessary. The strengths of

the groups respective of the order that they appear in Fig-

ure 3 are 1.56, 76.50, 1.56, and 4.00. Analysis of symp-
toms at the event level is trivial in Figure 3, since each

event has only one type of error symptom. An example
which better illustrates event level analysis is discussed m
the next section.

EVT !

EVT 2

EVT 3

EVT 4

R
E
C
T T
Y 1
P M
E E

3 64N1b,y I 7
3 84Mayl 7
3 S4May 17

3 S4May20
3 &4May20
] S 4Ma y20
3 S4May20

Q
E C SUC
R H YAH
R A NDA
T N RR$BC
Y N OASAH
P E MNINi
E L ETSKP

08:05:01 S 14 DO t 0 I 2
08:0?:2] S 14 25 I 0 $ 0
08:15:47 S 14 23 0 0 7 1
---. .....................

11:24:$9 E 14 23 .....
11:33:21 $ 14 23 0 0 7 1
tt:40:48 E 14 23 .....
11:58:14 S 14 DO l 0 1 2

] 84May20 11:5S:14 $ 14 25 I 0 5 0

] &4May28 12:30:45 S 14 23 0 0 7 1
3 84M=y2$ 12:44:22 $ 14 25 I 0 5 0
3 84May28 12:49:12 S 14 23 0 0 7 1
3 &4May28 12:53:47 S 14 DO ! 0 l 2

3 &4JunO2 03:54:51 $ 14 23 0 0 7 1
3 84JunO2 04:00:00 $ 14 38 0 I $ ]
3 84JunO2 04:15:54 E 14 23 .....

Figure 3:

Example of Multiple Symptom Super Event on CYBER-174

/

Analysis at the super event level is Performed by
applying the probabllistlc validation procedure to the set

of super symptoms extracted from a super event. In Fig-
ure 3. the union of event symptoms yields the following
super symptom set:

(1) ( ,El'.. .$10--0--7--I .$/1-O-1--2 .II1-0-.5--0 )

(2) ( ,El. • - • $10--0--7--1 • S/0--1--5--3 ) (4.1)

By dehnltlon of a super event, these super symptoms can

occur within only this super event. The strength of the
entire super event by Equation (3.1J Is 2.0, which indicates

that the events are strongly related. Thus, this super
event may be considered the result of a s/ngle cause. Had

these super symptoms failed to .satisfy Equation (3.1). we
would have Inferred that the super event was due to mul-
tiple causes.

It should be noted that the error records in this super
event span a period of seventeen days. The cause appears

to be an intermittent error which recurs, apparently
affecting different components. That they are due to a sin-

gle cause would not be immediately obvious from looking
through the entire error log. This example clearly
demonstrates the power of the proposed methodology to
extract good quality symptoms associated with severe
errors in computer systems.

4.3 Cyber-175 Super Event with Multiple Super Symp-
toms

Figure 4 shows part of a super event. This super event

consists of ten events persisting over a Period of the ten
weeks from July 8 to September 18 of 1985. Three of

these events are shown in Figure 4. The second event,

marked EVT 2. consists of three groups, spanmng a period

of Ivs_ than .seven minutes each. In addition to occurring

Ic-_-sthan an hour apart and having at least two records in
common with another group, these three groups had to be
validated at the group level to be Included in the _ame

event. Using the measure of strength of relationship
between records as described in _'ction 3.1, the value for
the first group's locations ( !-I-1-0. I-I-2-2. I-I-O-I . i-

0-0- I ) is 8.444. For the second group, the value for loca-
tions ( 1-1-1-0 , I-i-2-2 . 0-1-7-2 . I-!-3-3 ) is 12.901.

And for the third group, the value for locations ( 1-1-1-0.

I-0-O-1 , 0-1-7-2 , 1-1-3-3 ) is 10.411. Th¢_ strengths

clearly indicate the v•lldity of the record relationships
within the three groups.

Event I.cvel Analysis

As an example of analysis at the event level, we con-

s_der the set of symptoms generated by the groups in EVT
2. Four symptoms are generated:

(t) ( I-i-i--o )

(2) ( l-I--l--0, i--0--0--1 )

(3) ( I-1-1--0.1-1-2-2 )

(4) ( 1-1-1-0. I-I-3-3.0-1-7-2 ) (4.2)



By Equation (3.1) the strength of event Ev'r 2 is 32.16.
"l'hLs Indical¢_ a valid relationship between the three error

groups In event EVT 2, i.e., they were all caused by the

same problem. But this InferenceIsonly a localvlew. To

get a global view. we look for related events across the
entire data.

Super Event Level Analysis

For the super-event level analysis, other events with
at least one symptom set in common are extracted from
the data. Here we Illustrate the procedure for the events

shown In Figure 4. Events EVT I and EVT 3 ,*re single-

group events. Their symptom sets are simply the groups
themselves. The super symptoms obtained are:

(1) ( 1-O-2-O. 1---O-2-2. I-1-3-3 )

(2) ( 1-1-1-0.1-1-3-3.0--1-7-2 )

(3) ( I-1-1--O. I-1-2-2.1--O--O-1 )
t

(4.3)

Note that the first three symptoms of Equation (4.2)

have been absorbed Into the third super symptom of Equa-

tion (4.3). This provides global support of the inference

made at a local level that errors occurring In locations 1-
1-1-O, I-1-2-2. and 1-O-43-1 are due to the same cause.

The physical interpretation of these three super

symptoms is that the occurrence of one error Implies that

another error Is likely to follow. The strength of the rela-

tionship among the errors In a symptom set tellsus how

likely It Is that the related error will follow. The probe-

bilistlc validation procedure quantifies a measure of the

strength of the relationship among error records based on

their jointand individual occurrences.

For example, the values of the measure of relation-

ship strength between error records pertaining to the three
super symptoms of Equation (4.3). respectively, are 5.37,

5.2b, and 2.17. Thus. when an error occurs In location l-

l-l-O, errors are likely to occur In locations 0-1-7-2. 1-43-
0-1, I-1-2-2 and 1-1-3-3. Given that an error has

occurred In location 1-1-1-O, the chances are that an error

ts more likely to occur in location !-!-3-3 or 0-1-7-2 than

in Iocdtion 1-1-2-2 or 1-O,4)-I. Thus, the symptom sets

tell us about the other parts or other errors that are likely
to occur, and the measure of strength of the relationship
among the records In a symptom set tells us which parts

are more likely to be a_'ected from among all the parts
that can be affected.

A practical beneht of the proposed methodology is

that it makes service/maintenance engineers aware of all

the severe or persisting errors in a system. Although most

causes of error took the form of single, transient groups of

errors, there were quite • few that resulted tn numerous
recurring groups of errors, spanning months of time. For

example. 26.7% of the CYBER-17:'_ _.uper events were

composed of multiple groups of errors, as were 36.4% of

the CYBER-175's super events. In this contexl, it Ls

interesting to note that the maintenance engineers were

unaware of the persisting errors discussed in lhls section

until we brought it to their attenUon. This was not with-

Q
R E C/ S U C
E RH Y AH
C RA N CPDA
T T TN R HPRSBC
Y I YN E EO P PASAH
P M P E S CM AAN I N !
E E EL TS E RRTS KP

E 3 845ep05 04:01:33 S 14 0 .1 .18 0 0 1 0 2 2
V 3 S4SepO$ 04:01:47 S 14 0 $ 89 0 0 1 0 2 0
T 3 84Sep05 04:02:15 S 14 0 $ 3D O 0 1 1 3 3

3 84SepO.1 04:O2:2& S 14 O .1 .18 0 0 10 2 2
1 3 S4Sep0._ 04:03:32 S 14 0 $ 3D 0 0 1 1 3 3

3 84Sep13 06:00:09 S 14 0 $ $4 0 0 1 1 2 2

E
V
T

3 g4Sepl3 06:00:22 S 14 0 .1 E9 0 0 1 1 0 1
3 845ep13 06:00:42 S 14 0 $ 34 0 0 1 1 2 2
3 $4Sep13 06:01:31 S 14 0 .1 23 O O 1 1 I O
3 g4Sepl3 06:02:40 S 14 0 ._ .14 0 0 1 I 2 2
3 g4Sepl3 06:03:05 S 14 0 $ 23 O O 1 1 10
3 84Sep|3 06:03:28 S 14 0 .1 .14 0 0 I 1 2 2
3 $4Sep13 O6:05:11 S 14 0 $ && 00 1 0 0 1
3 S4Sepl3 06:05:40 $ 14 0 5 54 00 I t 2 2
3 g4Sepl3 06:0.1:$2 S 14 0 .1 23 O O t I 10
3 84Sep13 O6:0.1:.11 S 14 0 $ &A 00 1 0 0 1

3 g4Sepl3 07:00:02 S 14 0 .1 3D 0 0 1 1 3 3
3 84S¢p13 07:01:40 S 14 0 $ .14 O O 1 1 2 2
3 S4Sepl3 07:02:03 S 14 0 .1 23 O 0 1 1 10
3 84Sep13 07:02:40 S 14 0 3 3D O O I 1 3 3

3 $4Sep13 07:02:44 S 14 0 $ 07 O O 0 I 7 2
3 84Sep13 07:02:47 S 14 0 .I 3DO 0 1 1 3 3

3 g4Sepl3 0/$:00:33 S 14 0 5 23 0 0 1 1 1 0
3 g4Sepl3 08:01:09 S 14 0 .1 3D 0 0 1 1 3 3

3 84Sept30S:Ol:l$ S 14 0 .1 8A 0 0 1 0 0 1
3 84Sep13 01:04:12 S 14 0 .1 23 0 0 1 1 I O
3 84Sep13 08:0.1:32 S 14 0 $ 07 0 00 1 ? 2
3 84Sep13 0S:06:12 S 14 0 .1 3D O 0 1 I 3 3
3 84Sept3 08:06:12 S 14 0 $ 23 O 0 1 I 1 0

3 84Sep13 01:07:24 S 14 0 5 3D 0 0 1 I 3 3

E 3 84Sepla 05:01:53 S 14 0 $ SA 0 0 1 0 0 1
V 3 g4Sepl8 05:03:26 S 14 0 .1 23 0 0 I 1 1 0
T 3 S4Sepla 0.1:03:30 S 14 0 $ SA 00 1 0 0 1

3 a4SepIS 0.1:O3:.19 S 14 0 $ ._4 00 1 1 2 2
3 3 S4Sepl8 0.1:05:06 S 14 0 $ 23 00 1 1 I O

3 14S¢p18 0.1:05:20 S 14 0 $ ._4 0 0 I I 2 2

Figure 4:
Example of Multiple Symptom Super Event on CYBER-i 75

standing the fact that the same maintenance engineers
went through the error log on alternate clays of the week

during the six-month period when tht_e errors persisted.

They, however, failed to notice them.

4.4 Super Event with Unrelated Super Symptoms

This section Illustrates an exalnple of a super event

whose records appear to be strongly related at both the

group and event levels but fall 1o show signihcanl rela-
tionships at the super event level.

Figure 5 shows a super event constructed from
CYBER-175 error records and consisting of two events. In

the hrst event, marked EVT 1. there are two groups.

Analysts of the records in each group yields strengths of

8O4



1.42 and 19.27 for the smaller and larger, respecUvely. In
the second event, marked EVT 2. there are three groups.

Their strengths, in chronologicpl order, are 19.27, 5.23, and
1.42. Clearly, the records In all five groups are strongly

related.

This strong relationship is preserved at the event

level as well. The groups of EVT I are represented by a
single symptom: ( I-t-l-o, 1-O-2-0 ). EVT 2 had three

symptoms and an event strength of 4..54:

(t) ( Z--O-2-O. O-O--2-t. 1-t-7-2 )

(2) ( 1--o-2-o. t-z-z-o )

(3) ( !-0-2-0 ) (4.4)

This strength again Indicates that the error records In E_I"

2 are related to a single cause.

When analyzed al the super event level, however, we

f_nd that there Is no longer enough statistical support to
indicate that the super event of Figure 5 was due 1o a sin-

gle cause. The super symptom set Js found by taking the
union of the symptoms generated by EVT 1 and EVT 2

and is simply the first two symptoms of Equation (4.4).
The first super symptom appears independently four

ditferen! times among all the events generated from the

CYBER-175 data. The second super symptom appears

eight times independently. By Equalion (3.1), the strength

of this super evenl is only 0.38. This low strength lndi-

catc_ that the super event consists of errors due to unre-

lated causes. The super symptoms occur independently so

frc<iuently that their join! appearance in the super event of
F_gure 5 cannot Ix. considered significant.

Two slx<,fic procedure of the proposed methodology.

namely, the subset ba_-.d and truncaled analyses, have not

Ix, on illustrated in the examples d,scus._ed so far. Exam-
pies of thes_ procedures can be found m a related technical
repor! [Sridhar 85].

5. PERFORMANCE OF THE METHODOLOGY

As a final check on the performance of the methodol-

ogy, we obtained Independent corrol_ratlon of our results
from the log of failures and repair mainlalned by the field

engineers. Although thas recording was nol always com-

plete. It did allow us to perform an independent check on
our evaluation. The re'_ults of this check are summarized!

below.

In nearly 85% of the ca._s the enginccr_ were directly
able to confirm that our validated superevents

corresponded to real system problems. The evaluation was
made both on the basis of their experience and from their

field maintenance logs. The conhru..3 :aScs corresponded

to single event superevents.

For the remaining !,_% Of the case's, although the

engineers could not conhrm "noticing" a valid problem,
they agr_,cl that (with the benefit of hindsight) that a

problem had existed. However. the manifestation (an
event) was not severe enough to be noticed by their

analysis. One Important case wa._ the superevent cons=st-

Ing of ten events, dtscu__sed in section 4.2. This superevent

Q
R EC S UC
E RH Y AH
C RAN CPDA
T T TN R HPRSBC
Y I YN O PPASAH
P M PE M AANINI
E E EL B RRTSKP

3 g4MaylS 03:12:59 S 14:23 0 0 1 1 1 0
3 $4MaylS 03:14:01 S 14 89 0 0 1 0 2 0
3 $4MAyl8 03:15:12 $ 14 23 0 0 1 1 1 0

E 3 g41_y18 04:00:06 5 14 92 0 0 0 0 2 1
V 3 S4Maylg 04:00:17 5 14:13 0 0 1 1 1 0
T 3 a4Mayl8 04:00:31 S 14 92 0 0 0 0 2 1

3 g4MAylB 04:01:09 5 14 A1 0 0 1 1 ? 2

1 3 84MAyI$ 04:01:13 S 14 S9 0 0 1 0 2 0
3 84Mayl/_ 04:01:24 S 14 92 0 0 0 0 2 1
3 84MAy18 04:01:$$ $ 14 23 0 0 I 1 1 0
3 g4MAylS 04:02:30 S 14 92 0 0 0 0 2 1

E
V
T

3 S4MAylS 04:03:19 S 14 $9 0 0 1 0 :I 0

3 S4Mayl9 05:00:21 $ 14 92 0 0 0 0 2 1
3 g4M_y19 05:01:13 S 14 |9 0 0 1 0 2 0
3 $4Mayl9 05:01:$3 S 14 AI 0 0 1 1 7 2
3 84May19 05:02:31S 14 92 0 0 0 0 2 1
3 g4May19 05:02:54 $ 14 |9 0 0 1 0 2 0
3 84May19 05:02:58 S 14 92 0 0 0 0 2 1
3 84Mly19 05:0]:40 $ 14 A1 0 0 1 1 7 2
3 84M_y19 05:03:$9 S 14 23 0 0 1 1 1 0

3 84M_y19 06:00:09 S 14 92 0 0 0 0 2 1
3 84/V_y19 06:00:10 S 14 AI 0 0 1 1 7 2
3 g41_y19 06:00:11 $ 14 S9 0 0 1 0 2 0

3 84M_y19 07:01:04 S 14 23 0 0 1 1 1 0
3 114Msyl9 07:04:1._ S 14 B9 0 0 1 0 2 0
3 114Mayl9 07:04:30 S 14 23 0 0 1 I 1 0
3 84May19 07:04:31 $ 14 89 0 0 1 0 2 0
3 S4Mayl9 07:04:5:; 5 14 23 0 0 1 1 1 0
3 &4M_y19 07:04:55 S 14 |9 0 0 1 0 2 0
3 84May19 07:07:11 $ 14 23 0 0 1 1 l 0
3 ii4Mayl9 07:07:27 $ 14 &9 0 0 1 0 2 0
3 _i4Mayl9 07:07:48 S 14 23 0 0 1 1 1 0

Figure 5:
Example of Super Event Due to Unrelated Causes

spans ten weeks. Although. each event by atself was not
severe enough to show up. when taken as a whole it was

clear that a persistent problem had existed. It apl'_.ars that
as a resull of our Information corrective act,on was taken

because this particular superevent does not exist in the

data which has been gathered since then. In summary, we
find thal not only do our results agree w_th field findings
but also we are able to relate problems over a long period

of time which would otherwise go undetc-.ctvd.

The proposed methodology, thus, can be _ to
evaluate the goodness of any dlagno_:tlc system, whether

primitive or sophisticated. This can be done by analyzing
the relatmnship among the errors the diagnostic system
detects as Isolated. A very simple measure for the good-

ne_ of diagnosis of a system could be given by

nund>er O/ ¢rrur en4r_s C¢_z_cin_ _tlO relaled error_
I

Io_4 r_um_'r o/ _rror .nlr_,_ b_ ct_ _-ror lo I

80_



6. CONCLUSION

This paper has developed • methodology for •utomat-

lcally detecting symptoms _oclated with persistent errors
in computer systems. The methodology was shown to
work on two large computer systems In • multisystem
conhguratlon. The recognition process Is based on proba-

bilistlc techniques and Is Implemented In three levels. Each
level adds con6dence to the results. The power of the

methodology to allow for the resolutlon between single

and multiple hut Independent causes was also demon-

strafed. With multiple but overlapping symptoms, the

methodolos.y determines the number of distinct Indepen-
dent symptoms, The methodology quantifies the strength

of the relationship among related errors. Research Is now

in progrcs_ to develop a suitable diagnostic system that
will use the extracted error symptoms and automatically

carry out diagnosis and recovery. This would not only

facilitatebetter diagnosis and recovery management, but

will also Improve the overall rellabillty and performance

of a system,
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APPENDIX
SYSTEM DESCRIPTION

This analysis uses detailed error data automatically col-
lected over a sis-month period by the operating system. As with

other large systems, the CYBER machines maintain a Ios of •
variety of normal and abnormal events -- called the "sy_,lem
dayfle." The abnormal events are errors automatically dlctected
by the _'ystem. Errors can originate in the pGripheral prot_s_rs.
the central procee_or, main memory, or the disk subsygtce. The
errors are captured by Esrdware that checks the inte8rity of
information bein| transmittal between physKal elements m the
system. When an errorisdeified, a s_,'tem routinecollecl_ per-
tinent _d'ormation from the hardware concerning the state of the
machine at the time of the error and storesitin the dayfle. A

decoded sample of the information logged i_ shown Fil_ureA.I.

The Eelds of information include:

(!) record type: specifee the format of the rest of the record
(RECTYPE)

(2) error cock_:specifiesthe natureof the error (ERR)

(3) time and da_ of error

(4) channel in use at the time of error (CHAN)

(5) equipment number of the device involved (F-ST)

The three major record types are:

(I) deadstarts (RECTYPE - OOOl): these are logged for all
scheduled and unscheduled r/stem restarts. The two com-
mon d_dstart levelsare (a) dead, rut level zero whkh

denotes a complete halt of the machine with no job
recovery possible, and (b) deaclstArt level three which
implies that the integrity of the machine state is main-
tained and recovery is possible for mo_ jobs.

(2) disk subsystem errors (RECTYPE - 0024): the_e included
disk checkword errors, channel parity errors, and device
contention errors.

(3) parity-related errors (RECTYPE - 0003): these include
memory errors (single error correction, double error detec-
tion), peripheral processor errors, channel errors, extended
core parity and central memory controller errors.
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l 19MAY84:2:06:I2 0024
2 19MAY84:5:00:21 0003 PARITY
3 IgMAY84:$:00:$? 0003 PARITY
4 19MAY84:$:01:I3 0n03 PARITY
$ 19MAY|4:$:01:_3 0003 PARITY
6 19MAY84:$:02:31 0003 PARITY
? 19MAY84:$:02:$4 0008 PARITY
g 19MAY$4:$:02:$8 0003 PARITY
9 19MAY84:$:03:40 0003 PARITY

10
9i
92
89
At
92
89
92
AI

POSIT QUADCSU

2660_I

0 0
1 0
1 I
0 0

I 0
0 0
l 1
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ERR-
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2 1 MEM
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Reconfigurable Tree Architectures Using Subtree
Oriented Fault Tolerance /,.,

MATTHEW B. LOWRIE AND W. KENT FUCHS, MEMBER, IEEE

Abstract--An approach to the design of reconfigurahle tree
architectures is presented in which spare processors are allocated
at the leaves. The approach is unique in that spares are a.,t_ociated
with subtrees and sharing of spares between these subtrees can
occur. The Subtree Oriented Fault Tolerance (SOFT) approach is
more reliable than previous approaches capable of tolerating link
and switch failures for both single-chip and muitichip tree
implementations while reducing redundancy in terms of both
spare processors and links. VLSI layout is O(n) for binary trees
and is direetly extensible to N-sty trees and fault tolerance
through performance degradation.

Index Terms--Fault tolerance, reconfiguration, reliability,
spare processors, tree architectures.

1. INTRODUCTION

continually rising demand for high performance
computation has created a need for highly concurrent

computer architectures. One architecture which has received

significant attention is tim tree topology [ 11-[3]. Tree architec-

tures have an inherent ability to compute concurrently with

typical communication times between the n processors being
O(log n). However, as the number of processor nodes and

communication links increases, the probability of single or
multiple failures within structured concurrent architectures

becomes unacceptably large. Consequently, recent interest has

arisen in designing the ability to reconfigure concurrent

architectures with one or more faults. Reconfigurability,

which is one aspect of fault tolerance, is especially significant
in tightly coupled tree architectures where the failure of a

single link or processor can result in the subsequent loss of all

communication with processors in the subtree below the faulty
element.

One of the initial reconfigurable binary, tree proposals was

made by Hayes. who developed a procedure for constructing
"optimal" 1-fault tolerant trees [4], which has since been

extended by Kwan and Toida [5]. Raghavendra, AviZienis.

and Ercegovac (RAE) [6], improved on these proposals by

adding sufficient redundant lines in order to tolerate multiple

failures. Link redundancy for binary trees in the RAE

approach is as high as 200 percent, and VLSI layout may

Manuscrapt received July 31. 1985; revised March 28. 1986 and January

21. 1987. This research was supported in part by the Microelectronics and

Computer Technology Corporation (MCC) under a VLSI/CAD grant, and by

the National Aeronautics and Space Adrmmstration (NASA) under Contract
NASA NAG 1-613.

The authors are with the Computer Systems Group. Coordinated Science
Laboratory. University of Illinois. Urbana, [L 61801.

IEEE Log Number 8715432.

require O(n log n) area [7]. Hassan and Agarwal [7], recently

presented a modular technique which allocates one spare to

multilevel groups of processors. This scheme is conceptually

similar to the RAE approach in that it dedicates every spare to

one specific group of processors, but has the advantage of

O(n) layout and modularity for multichip architectures.

Another proposal for reconfiguration which is applicable to

tree architectures has been proposed by Rosenberg [8]. The,

approach requires a collinear layout with each node requiring

access to a log n bus. Redundancy in terms of switching

transistors is O(log n) for each node. The switching structure

provides for efficient utilization of spare processors. How-

ever, fault tolerance for the communication lines and the

switching transistors is not considered.

One of the important objectives in designing for reconfi-

guration is efficient utilization of spares. If the architecture has

k spare processors, then the objective is to be able to tolerate

any combination of k processor failures through reconfigura-
tion. This should be accomplished with a reasonable increase

in interconnect, manageable layout complexity for large

numbers of processors, and a bounded number of pins per

chip. In addition, failures in interconnect and switching

structures should also be tolerable through reconfiguration.

A strategy for satisfying these objectives for binary tree

architectures is presented in this paper. The approach places

spare processors at the leaves of the tree and provides for

considerable flexibility in reconfiguration through sharing of
spares between adjacent subtrees. This strategy, which is
referred to as Subtree Oriented Fault Tolerance (SOFT).

utilizes a virtual displacement technique to reconfigure a spare

processor into the tree. The capability of sharing spare

processors between subtrees provides the SOFT approach with

significantly higher reliability than previous techniques allow-

ing for switch and link fault failures, where reliability is the

probability that the tree is functional at a time t. given that it

was fault free at time 0. In contrast to other proposals, SOFT

is able to tolerate link and switch failures while reducing the

number of redundant links between processors. For binary.

trees, the approach is shown to yield O(n) layout. The

architecture can be partitioned on separate chips for arbitrarily

large trees, while providing fault tolerance for both on and off-

chip connections. Fault tolerance through pertbrmance degra-

dation is also possible with a SOFT design, as well as
application to N-ary trees.

In Section II of this paper, the SOFT architecture is

presented for binary trees. Considerations for implementing a

SOFT binary tree are discussed, including the placement of

0018-9340/87/ I000-1172501.00 © 1987 IEEE
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spare processors and communication links. Section HI pro-

vides a formal analysis of reconfigurability in SOFT binary

trees in the presence of processor, switch, and link failures. In

Section IV. comparisons between the reliability of SOFT and

past reconfigurable designs are presented. Finally, Section V

extends the SOFT concept to N-ary trees.

II. THE SOFT DESIGN FOR BINARY TaEES

The SOFT approach to reconfigurable tree architectures

employs spare processors at the leaves of the tree and

additional links between processors to maintain a complete

tree topology in the presence of multiple faulty processors and

links. Faulty processors and links are bypassed by utilizing a

simple switching structure, which allows a logical displace-
ment of processors and links to occur from the failure to a

spare at a leaf. At levels high in the tree, failure of a node

results in bypassing the node, thereby allowing communica-

tion directly between the faulty node's father and one of its

sons. Thus, the faulty node's son assumes the tasks allocated

to its faulty father. Since the son is performing the tasks of its
father, another processor must be found to assume the son's

tasks. In a similar fashion, one of the son's sons assumes its

responsibilities. This "logical displacement" continues until a

spare is configured in at the leaves. A detailed discussion of

SOFT reconfiguration is presented in Section III.

A. Terminology for Binary Trees

All trees are said to have i + 1 levels, with the root at level

0 and the leaves on level i. The term "upper levels" refers to
levels 0 through i - 1. The root is labeled 1, the left son of

any node (processor) n is labeled 2n and the right son is 2n +
I. Two nodes are adjacent if they are connected by a

nonredundant or redundant communication link. The father of
a node n on level k, f,,, is the adjacent node on level k - 1.

The grandfather of n, g,,, is the father of the father of n.

Similarly, the son of a node n is son,,, f_ and son_ represent the
father and son nodes of link 1, respectively. The brother of a

node n, b,, is the single node having the same f_. bt refers to
either node connected to a redundant link 1. A subtree is

defined as a tree with < i levels, which is contained in the tree

architecture such that the leaves of the subtree correspond to

leaves in the complete tree. The leftmost (rightmost)

descendent of a subtree is the node which can be found by
following only left (right) descendents of the root of the

subtree. The cousin of a node n. cous,, is the leftmost

(rightmost) descendent of the root on the same level if n is the

rightmost (leftmost) descendent of the root. For all other n.

cous_ is n - ( + )! if n is a left (right) son of its father. The

ancestor of a node n on a level q, A _,_ is the single node on
level q which contains n in its subtree.

B. Allocation of Redundant Nodes and Links

The number of spare processors supported by the SOFT
architecture is 2 c. where c is an integer: 0 _< c _< i - 1.

Algorithm 1 is an algorithm for positioning these spares. The

redundant links required by the SOFT architecture are

allocated as described by Algorithm 2. The SOFT binary tree
of Fig. l was generated by Algorithms ! and 2 with i = 4 and

c = 2. A subtree with leavesx + k2'SSr to x + (k + 1)2 '_s'r -

Fig. I. SOFT architecturewith c = 2 and i = 4.

I, where x is the left'most leaf of the root and 0 _< k _< 2 c -

is referred to as a Spare Subtree, or SST. Each SST has

associated spare which is adjacent to its rightmost leaf. "I

spare adjacent to an SST's leftmost leaf is referred to as

nonassociated spare. In contrast to X-tree or Hypert|

structures [91-[111, the SOFT topology is not a half-ri

structure in which each level contains cousin connectic

instead of the n to b, connections utilized by SOFT.

Algorithm 1: Placement of Spares:

Begin

iSST : = i -- C; {height of spare subtree}
for k : = 1 to 2 i-'ss'r do begin

x : = leftmost leaf of root; {leftmost descendant c
level i}

n:= x + k2 issr - 1

add spare and connect as right son to n;
{associated spare of SST k

which has leaves n - 2 'ssT + 1 to n}
connect spare to cousn;
end

end.

Algorithm 2: Placement of Redundant Links:

Procedure Brother_connect (n :node)

begin

connect n to bn;

if level(n) < i {n is not a leaf}
then begin

Brother_connect(left son of n);

Brother_connectfleft son of b_);
end

else

if not(adjacent_to_spare(n))

then connect n to COUSn;

end

begin

Brother_connect¢left son of root _;
end.

C. Redundancy Calculations

The calculations for percentage of spare redundancy an
straightforward:

2 c
percent node redundancy =

2,-I_i

The number of redundant links is

redundant links= 2_ +2'+2c+ I.
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TABLE!

SOFT REDUNDANCY

I_ Node

1*25.0%

12.5%

_6.25%

l

:2**l_ 1

Lm,k

Redundancy

==100%

=_87.J%

==gl.25%

_75_

brothar fltha.

father,

PE PE

(a_ (b) (c)

Fig. 2. SOFT switching m binary trees. (a) Upper level switching. (b) Leaf

,_wltching. (c) Spare switching.

Thus, the percentage of redundancy for links is

2,-z+2,+2c
percent link redundancy =

2,-t_l

For large i, this is approximately 0.5 + 0.25 ÷ (percent

redundancy of spares). Table l enumerates the possible

percentage node redundancies for large i and the correspond-
ing percentage of link redundancy.

D. Implementing the SOFT Architecture

Implementing the SOFT strategy requires all processors to
be identical. Most well-known algorithms for tree architec-

tures utilize identical processors [1]-[3]. It is also assumed

that I/O through the leaves is not required. This is not a

necessary restriction, but simplifies presentation of the archi-

tecture. Most tree architectures also do not use I/O through the

leaves [1]-[3]. In fact, the classical H-tree layout cannot
accommodate I/O through the leaves for large trees.

1) Switching Scheme: The virtual processor displacement
concept of SOFT reconfiguration is implemented with the

switch structures of Fig. 2. Utilizing the _witch structures.

design of the processing elements is independent of the
reconfiguration scheme and each processor can maintain a

standard three input-output port design.

2) Muir]chip Trees: If an entire tree cannot fit onto a single

chip or wafer, then the tree must be partitioned for chip

allocation. The major partitioning consideration is imposed by
pin limitations. From Fig. 1, it can be ,ten that at most one

additional link per chip is required for chips containing no leaf

processors, and fewer pins per chip tot chips containing leaf
processors.

3) VLSI Layout of SOFT Trees: To efficiently lay out a

SOFT binary, tree in VLSI. an adjustment in the general
architecture is made in order to employ a variation of the

classical O(n) H-tree layout. The VLSI layout for a tree ofi _<

4 follows the layout of Fig. 3(a). The location of spares
depends upon the percentage of spares allocated to the tree. As

in Algorithm l, the spares are located on the nonbrother

redundant links, between the leaves. For trees with i > 4 the

layout algorithm presented below results in area of O(n). The

result of Algorithm 3 with i = 7 is depicted in Fig. 3('0). The

ellipses represent the five-level subtrees constructed in the first
"for loop" of the algorithm.

Algorithm 3." VLSI Layout of Trees with i > 4.

begin

fork:= I to 2'-' do

z(k) : -- a five-level SOFT tree constructed by Algorithms I and 2;
fork:= I to 2'-_do

connect root(zt2*k)) to roott2*k - 1));

construct main tree (m) as an i - 5 level nonredundant binary tree;

apply Algorithm 2 to m omitting all cousin connections;
fork:= I to2 '-s

x : = leftmost leaf of root;

movetox + k - 1

connect z(2*k) as left son;

connect z(2*k - I) as right son;
end

end.

Theorem 1: The SOFT layout, as described in Algorithm 3,
for a binary tree of n leaves, has O(n) area.

Proof" It is well known that the area of an H-tree is O(n)

[12]. The layout can be thought of as having O(x/'n') rows and

columns. The layout produced by Algorithm 3 (as in Fig. 3)
has at most one redundant link (additional row or column)

parallel to each row or column of the O(n) H-tree layout.

Since each spare can be thought of as lying in a redundant link.

the edge of the square corresponding to the layout of a SOFT

tree is at most O(k,_n). where k is a constant which, in the

worst case is between 2 and 3. Since this is still O(V_'), the
area of the SOFT layout is O(n).

The modification to the general SOFT approach necessary
for VLSI layout has the following implications.

1) While the maximum number of spares is = 25 percent.

the minimum is increased from an arbitrarily small percentage
(1 per tree) to --3 percent (1 per five-level subtree).

2) Since the five-level subtrees do not share any connec-

tions among spares, SST's cannot "'borrow" spares from
neighbors not within that subtree. This does not, however.

affect the reliability analysis presented in Section IV, which

shows significant reliability enhancement is gained with the
SOFT strategy.
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_a)

Fig. 3.

(b)

VLSI layout of SOFT architecture.

[II. FAULT TOLERANCE IN SOFT

Necessary and sufficient conditions are presented for

reconfigurability in SOFT architectures. Reconfiguration for

faulty processors is considered first, followed by an analysis of
reconfiguration for link failures and switch failures. The fault

model for PE's and links is functional in nature and includes

any fault affecting the correct operation of the processor or the
link under consideration. The fault model for switches consists

of stuck-open or stuck-closed faults.

A. Tolerance of Processor Failures

In Section III-A-I. a concise description of SOFT reconfi-

guration is presented. The second section presents some basic

properties of SOFT reconfiguration. Based on these proper-

ties, necessary and sufficient conditions for reconfigurability
are derived in Section III-A-3.

Definition 1: Displacement is the logical movement of a

node n to the physical position corresponding to./, in order to

replace f,, due to either the failure or displacement off,. At the

leaves, displacement includes the logical movement of a leaf to

the left or right in order to replace b, or cous,. Displacement

through node n refers to the act of displacing n.

Definition 2: Double displacement refers to an attempt to
displace a node twice. For example, if n is displaced, it is

assuming f,,'s tasks. If displacement were to occur through n
again, n would assume g,,'s tasks.

In analyzing the reliability of a reconfiguration scheme, it is

necessary to determine both what. fixed fault subsets (a set of

processors in the tree designated as having failed) are

reconfigurable (i.e.. static reconfiguration), and for an exist-

ing machine with failures, whether the failure of an additio

specific processor can be tolerated (i.e., dynamic reconfigu
tion). For SOFT dynamic reconfiguration, the order in wh

faults occur does not affect the ability of the architecture

reconfigure. As a result, if it is known exactly what sets
faults can be reconfigured, then a fault which occurs at tim

can be reconfigured if and only if the new fault subset

reconfigurable. Similarly, if it is known exactly what failu

can be reconfigured given a set of faults, then all sets

reconfigurable faults can be inductively determined. Con

quently, the reconfigurability analysis of this section
applicable to both scenario_.

1) Reconfiguration: As discussed in Section II, failure o

node in an upper level results in a series of displacements ur

a spare is configured in. If a leaf node n fails and it is adjac¢

to its SST's spare, n is simply bypassed and replaced by t

spare. If n is replacing f,,, n takes b, as one son and the sp=
as its other son. If n is not adjacent to the SST's associat

spare, it must be replaced by or take as its second son t

nonbrother leaf adjacent to it, an. If a son off,,,, is adjacent tc
spare, fa, may use that spare as a second son, otherwise

takes a leaf adjacent to one of its sons. This displaceme

continues along level i until a spare is configured in. 1

convention, if a failure occurs in an SST, it displaces towa
its associated spare if possible. If there are two failures in t

SST, it must configure in the nonassociated spare. If t

nonassociated spare had been configured in to its associat.

SST, then this SST must take its nonassociated spare. TI"

continues until an unused spare is configured in. In Fig. 4..

example of reconfiguration with four faults and four spares
presented.

Complete algorithms have been developed which guarant,

proper reconfiguration of a SOFT tree in the presence of al

set of multiple faults in which a reconfiguration exists [13].

concise summary of those algorithms is presented below.

Failure of spares: Bypass the spare. The result is equiv
lent to taking the two SST's adjacent to the faulty spares a_

combining them into one larger SST.
Failure of SST nodes: [f there are no faults within the $5

and the associated spare is not configured in as the son of i

nonassociated SST. then reconfiguration proceeds toward t_

associated spare, else reconfiguration proceeds toward tt

nonassociated spare.

Failure of a node above the SST level: Reconfigurati¢

proceeds from an upper level to an SST. Once the displac

merit has reached the SST level, it continues as previous
described. Three conditions determine the SST toward whi,

reconfiguration proceeds: a) the root of the SST is

descendant of the faulty node. b) all ancestors of the root of tl

SST on levels between and including the root of the SST az

the level below the faulty node are fault free, c) the associat_

spare of the SST is not being used. If there exists an SS

satisfying a), b), and c) then reconfiguration proceeds towa:

the leftmost such SST. else reconfiguration proceeds towaJ
the leftmost SST satisfying a) and b). If there is no SST fi

which a) and b) is true then the tree is not reconfigurable.
2) Properties of SOFT Reconfiguration: The foiiowir

Lemmas present basic aspects of reconfigurability whic
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Fig. 4. Reconfiguratlon in an i = 4, c = 2 tree with four faults.

enable derivation of the necessary and sufficient conditions

presented in Section III-A-C.

Lemma I." Double displacement occurs at upper levels if

and only if displacement is attempted through a faulty node.

Proof," Displacement only occurs in descendants of faulty

nodes. The lemma is not concerned with displacement of

leaves so no double displacement occurs due to unavailability

of spares. For two displacements to intersect at one node

(double displacement, by Definition 2). the displacement due

to a failure higher in the tree must intersect a previously

displaced node. But it is necessary to pass through a father in
order to reach one of its descendants. []

Lemma 22 SOFT trees cannot reconfigure using double

displacement.

Proof." By Definition 3, at upper levels some node n is

assuming g#'s tasks. But n is not adjacent to bln. Thus,

communication with b/, would be lost, and it would not be
possible to maintain the rigid tree topology if double displace=

ment occurred. At level i. the father of the double displaced

node would be adjacent to only one leaf processor. []

Lemma 3: At most one of n and b_ can be displaced.

Proof: Displacement of both would imply that either f_

has been displaced twice, which is not possible by Lemma 2,

or there is a displacement throughf_ andf_ has failed, which is

also impossible by Lemmas 1 and 2. []

Lemma 4: Two failures within an SST. or displacement of
the root of the SST. and a failure within the SST, are

reconfigurable if and only if both spares adjacent to the SST

can be reconfigured in as sons of nodes in the SST.

Proof: Displacement of the root or" the SST is the same as

failure of the root of the SST in terms of reconfiguration below

that level. Consequently. only failures within the SST need be

considered. If only one adjacent spare can be configured into

the SST. and there are two tailure_ tn the SST. then

reconfiguration is not' possible by Lcmma 2. It" both adjacent

spares can be used. then reconfiguration through fault-free

nodes is clearly possible, i.e., a fault _ubset _uch as Fig. 5(a)
cannot exist with only two failures. 'Z

3) Analysis of Reconfigurability." In previous approaches,

unreconfigurable multiple failures correspond to more than

one fault in a group of nodes which have been allocated a

single spare [6], [7]. Unreconfigurable multiple failures in the
SOFT approach, regardless of the number and location of

spares, correspond to faults which force double displacement.

For example, consider the failure of a node n. Displacement

must occur through a son,. Consequently. the presence of a

fault subset as depicted in Fig. 5(a) is not reconfigurable. If

_6

(c)

Unreconfigurabte faults at upper levels.

left son,, has failed, then displacement must occur through

fight son_ which implies that one of fight son,'s must be fault

free for re'configuration to occur. The failure of left son, can

be thought of as forcing the reconfiguration into the subtree

with fight son_ as its root. Thus, Fig. 5(b) and (c) is not

reconfigurable since there is no path from the highest faulty
node to the leaves through only good nodes.

In order to determine what fault scenarios are reconfigura-

ble, spare sufficiency (SS) is defined. SS is a Boolean value
associated with each node of the tree.

Definition 3: The SS of a spare s is I if and only ifs is fault

free and not configured into the array, or. the nonassociated

spare of the SST has SS of 1 and is not configured into the

array as a son ofs's associated SST, or s is faulty, and the SST
for which s is not associated has SS of 1. The SS of a node

within an SST is equal to the SS value of its associated spare.

The SS of a node n in a level above the SST's is 1 if and only if
SS(left son_) or SS(fight son,,) is 1 and n is fault free, where

SS(n) denotes the spare sufficiency of n. Z

In addition, the shiftability of a displaced node n, denoted

as s(n), is formally defined as

s(n) = SS(b,) + " E" ]ss(0A9 FI g (A'o)
q = level (n)- I / = level (n)- 1

(I)

where good(n) is 1 only if node n is fault free.

Theorem 2 describes reconfigurability at the SST level.

Corollaries 1-3 provide necessar?' and sufficient conditions for

reconfiguration of a failure anywhere in a SOFT tree.

Theorem 3 describes the class of fault subsets which are

reconfigurable in SOFT architectures.

Theorem 2: The failure of any node n within an SST whose

root is not displaced is reconfigurable if and only if SS(n) is 1.

Proof." A detailed proof can be found in [131. An outline

of the proof follows. From Definition 3. one of three
conditions holds for a node in SST S to have SS of 1: a) its

associated spare is available, or b) there exists an SST whose

spare is available such that all SST's left of S and right of the

available spare have either faulty spares or spares configured

in to their associated SST's, or c) the associated spare of S is

failed and its nonassociated SST has SS of I. Any one of these

three conditions is sufficient for reconfiguration. If none of

these three conditions holds, reconfiguration is not possible.
Corollary 1: Failure of node n, above the SST level, is
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reconfigurable if and only if the node is not displaced and
SS(n) is I, or, the node is displaced and s(n) is I.

Proof." A detailed proof is contained in [13]. The proof

distinguishes the cases of n not displaced and n displaced. [f n

is not displaced then Corollary 1 follows direcdy from

Definition 3 and Theorem 2. [f n is displaced, then the failure

of n is recoRfigurable if and only if n's displacement can be

shifted into another subtree. In this case, Corollary I follows

from the definition of s(n) and the argument above. []
Corollary 2: Failure of a nonredundant node n within SST

S can be tolerated if and only if either SS(n) is 1, or the root of
S, r, is displaced and s(r) is 1.

Proof: When a failure in an SST is detected, there are

three possibilities for reconfiguration. If and only if SS(n) is 1,
reconfiguration can proceed toward either the associated or the

nonassociated spare, from Theorem 2. If r has been displaced,

then the third alternative is to shift r's displacement into

another SST, and use S's associated spare to reconfigure for

n's failure. From Corollary 1, this is possible if and only if
s(r) is 1. []

Corollary 3: The failure of a spare n is tolerable if and only
if the failure of a nonredundant node in either the associated or
unassociated SST is tolerable.

Proof: If the spare is not configured into the array, then

its failure is tolerable. A failure in either SST adjacent to the

SST is also tolerable. If the spare has been configured into the

array, then there are two possibilities for reconfiguration. The

first is to undo the displacement causing the spare to be

configured into the array. The second is to bypass the spare

and use the neighboring SST's other adjacent spare. To do

the first, it is necessary and sufficient that the spare had been

configured into its associated SST (if the spare is configured
into its unassociated SST, then the displacement cannot be

shifted out of that SST) and a failure within the SST is

tolerable (this follows from Lemma 4 and Corollary 2). If the
spare is to be bypassed, then it is necessary, and sufficient that

a failure in the neighboring SST be tolerable, also by Lemma 4

and Corollary 2.

Theorem 3: A SOFT tree is properly reconfigured if and

only if each faulty node above the SST level has a path through

fault-free nodes to the ith level (i.e.. no sub_ets such as in Fig.
5), and there are no more than x ÷ I faults or displacements of

the root of an SST in any x adjacent SST's. and there are at
least x + I spares in the tree.

Proof: If there is no reconfiguration forced into a subtree

whose children are all faulty, then reconfieuration at upper
levels can proceed through fault-free nodc_into the roots of

the SST's (from Corollary 1). The question of reconfigurabil-
ity then concerns only the availability of spares at the SST

level. If there are x + I fauhs in x SST's. there are exactly x
+ 1 spares available. At most two failures or a failure and a

displacement of the root can occur within an SST. otherwise

the condition of the Corollary is violated for x = I. Lemma 4

indicates that any two failures within an SST can be tolerated

as long as the nonassociated adjacent spare can be reconfi-

gured in. Since there are x + 1 ,spares available, the faulty
PE's are reconfigurable.

Given a SOFT architecture and a specific fault subset, an

- 1

algorithm has been implemented in Pascal for determining
proper reconfiguration exists, and which specifies the confi

ration. The algorithm runs in time directly proportional to

number of nodes above the Spare Subtree level. Since the.,

of the tree above the SST's equals the number of spares 1

one, the algorithm is O(n) for a fixed percentage of spar
where n is the number of nodes in the tree. For a fixed numi

of spares, the algorithm runs in order constant time.

8. Tolerance of Switch and Link Failures

In this section, a SOFT architecture is shown to be capat
of tolerating functional failures in communication links a.

stuck-open and closed faults in the switches of Fig. 2. T

following abbreviations are used in describing each node: PF

denotes the processor of a node as being fault free, SF

represents the switches associated with a node as being fat
free, and LFF indicates the links connected to a node are fa_
free.

1) Failure of Links:

Definition 4: A node of a tree is replaceable if and only if
is PFF, and, in the given fault scenario, the fault of th_

processor is reconfigurable, r-

The difference between replaceability and SS is th_

replaceability assumes that there are no link/switch failures t,

prevent reconfiguration. Similarly, replaceability is substi

tuted for spare sufficiency in the definition of shiftability, s(n)
Definition 5." A nonredundant link 1 (link between n an(

f,,) is isolated if: a)fi, left sonh, and right son h are SFF ant

LFF (except for the failed link), and b) b_o,t is replaceable, f-

Lemma 5." Ifa faulty nonredundant link is isolated, then the
tree can be reconfigured around that link.

Proof." The switching scheme of Fig. 2 allows the faulty

link to be removed from the tree if bsont can be displaced. The

restriction of Definition 5 b) guarantees that bsont can be

displaced. Part a) of Definition 5 guarantees that the switching
around the failed link will allow this reconfiguration to
OCCUr. --.

If no ancestor has failed, then the link failure is considered

as a failure of f_. If an ancestor has failed, then its

displacement is shifted through fr thereby freeing a spare in
another SST for use in case of another failure.

Definition 6: A redundant link 1. in an upper level, is

isolated if: alf_: is PFF. SFF, and LFF, and both brothers are

SFF. and b) s(fot ) is 1. ,-_

Lemma 6." If a redundant link, at upper levels, is isolated

then its failure is reconfigurable.

Proof: The restrictions of the definition and Corollary 2.
guarantee that the displacement which necessitates the use of

the redundant link can be shifted into another subtree. Thus,

the faulty redundant link is no longer configured into the
tree. :--

Definition 7." A redundant link / in level i is isolated if

either: a) the displacement is to the left _'right) and the left

(right) brother is replaceable, or b) the displacement is from

above and fo: is PFF, SFF, and LFF and s(fbt) is 1.

Consequently, iffo t has failed then the displacement is not
shiftable.
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Lemrna 7: If any redundant link is isolated then its failure is

reconfigurable.

Proof." At upper levels this is true by Lemma 6. At level

i, Definition 7 applies. If the displacement is to the left or right

[Definition 7 a)] and if that leaf is replaceable, the displace-
ment which caused the use of this redundant link can be

reversed to configure in a different spare. Thus, the redundant

link once again becomes isolated from the tree. If the

reconfiguration involving the redundant link is a result of a

displacement of the father, then the displacement of the father

must be shifted into another subtree, and reconfiguration in

level i must be in the direction away from the faulty link,

otherwise the faulty link will not be configured out of the tree

[b)]. This is possible under the condition of part b) of

Definition 7 by Corollary 2. "7

Theorem 4: Isolated link failures can be tolerated in SOFT
architectures.

Proof." From Lemmas 5 and 7, all interprocessor isolated

link failures can be tolerated. A fault in a link connected

directly to a processor [i.e., links A and B in Fig. 2(a)] can be

modeled as a failure of the processor itself. In this case, the

link fault is reconfigurable if the processor is replaceable.

Failure of link C in Fig. 2(a) only prevents displacement to the

left if the PE has failed (displacement to the right is possible),

or displacement to the right if the PE has not failed

(displacement to the left is still possible). In Fig.- 2(b), failure

of link C prevents displacement of the node to the left or right

if the node is not faulty, and to the left only if the node has
failed. []

2) Failure of Switches:

Definition 8: Any switch in a nonspare node is defined to

be isolated if it is in a node which is PFF, SFF (except for the

faulty switch), LFF, and the node is replaceable. Any switch

in a spare node is defined to be isolated if the spare is SFF

(except for the faulty switch), LFF, and the replaceability of

the SST's adjacent to the spare are I. []
Theorem 5: If a switch is isolated, then its failure is

reconfigurable.

Proof." By symmetry, the only switches which need to be

considered are switches I-5 in Fig. 21a) and tb) and the

switches of 2tc_. Since the node is FFF. SFF. and LFF prior to

the switch failure, the node can support any reconfiguration

for which either the faulty switch is not necessary. (stuck-open

fault), or the switch should be closed, or the closing of the

switch has no effect. The fact that the node is replaceable
indicates that the failure of this node is tolerable. As a result, if

the node is displaced it can be returned to the undisplaced

state. This can be done at upper levels by shifting the
displacement into another subtree. At the leaves, the reconfi-

guration is shiftable since the failure of this leaf is reconfigura-

ble. Failure of the switches of Fig. 2(a) and (b) is tolerable by
the following analysis.

15 Switch 1: A stuck-open fault is reconfigurable as a

failure of the processor. Reconfiguration of stuck-closed is not
required since the node is PFF.

2) Switches 2-5: A stuck-open fault is reconfigurable by

placing the node in the undisplaced state. Stuck-closed can also

be properly configured in the undisplaced state.

In spare switching [Fig. 2(c)], for the case of stuck-closed

faults, the spare is not configured in unless it is needed.

Consequently, stuck-closed faults have no effect. For stuck-

open faults, if the spare is not configured in, then the

replaceability in both SST's is 1, and failure of any switch is

tolerable. If the spare is configured in, then a stuck-open fault

is tolerable since either SST can reconfigure a different spare

in, which means that there is a configuration which does not

employ these switches. []

IV. RELIABILITY ANALYSIS

In this section it is shown that the reliability of a SOFT

binary tree, even with the restrictions imposed by VLSI

layout, is always superior to a tree implemented using the class

of approaches employed by [6] and [7]. This is demonstrated

by first establishing an upper bound on the reliability of the

previous approaches, independent of the actual implementa-
tion, i.e., their optimal reliability, and comparing it to a lower

bound for SOFT trees. Exact reliability calculations of some

specific SOFT implementations are also derived and com-

pared.

A. Reliability of Other Approaches

It is assumed that the i + 1 level tree is allocated k spares.
A Modular Sparing Approach (MSA) to fault tolerance in

binary trees is any approach to reconfigurable design which
partitions a tree into k groups of processors and allocates each

group of processors one spare to be used exclusively by that

group. The work of Raghavendra et al. (RAE) and Hassaan
and-Agarwal (M trees) can both be classified as MSA.

Significantly, SOFT trees are not included in this category. It

should be noted that the strategy of Rosenberg [8] is not MSA.

However, Rosenberg's strategy does not allow for intercon-
nect or switch failure. With an MSA, each module must be

functioning in order for the tree to be functioning. Thus, the

reliability can be expressed as the product of the reliability of
all of the modules. In general this is

m=,t"

R,_,= _ R_ (25
m=[

where R,,, is the reliability of the ruth module. Although some

MSA schemes may tolerate interconnect failure, the following

reliability analysis considers only processor failures, for sake

of simplicity. Since the spare can be configured into the

module in case of any single failure, the reliability of each
module can be expressed as

Rmoau_e= Rq + qR _- t(l - R)

where R is the reliability of each individual processor and q is

the number of processors in the module, including the spare.

The reliability for all processors is assumed to be equal and

exponentially distributed (i.e.. R = e-Xt). Although this

assumption is not accurate for many environments, it does

provide an initial point of comparison and is a common

assumption in reliability analysis [61, [7]. [14]. For simplicity.

the failure rate of spares, /z, is assumed to be equal to the

failure rate of nonredundant processors k. In the following



LOWRIJE AND FUCHS: RECONFIGURABLE TREE ARCHITECTURE USING SOFT

discussion, it is assumed that the trees can be divided evenly

into modules of size q, although the theorem does not rely on
this assumption.

Theorem 6: Optimal reliability in an MSA tree corresponds

to when the tree is divided into modules of equal size: q =
(2 _'l- 1 + k)/k.

Proof." Consider a tree with equal module size. The

following inequality indicates that every time a single node is

moved from a module of size q to another module of size q,

thereby creating modules of size q + I and q - I, R,ys
decreases.

[RV +qRq-J( I -R)]z>[R q*l +(q+ 1)Rq(l -R)]

• [Rq-t+(q-l)Rq-'(l-R)].

Additionally, the following inequality indicates that moving
nodes from modules of smaller size into modules of larger size
will decrease reliability.

[Rq*_ +(q+c)Rq+c-I(l -R)]

[R q-* + (q - k)Rq-*- '(1 - R)] > [Rq _" _+ (q + c + 1)

• Rq÷c( 1 -R)][R q-*-I +(q-k- l)Rq-_-"(l -R)]

for any 0 _< c, and 0 _< k < q.

It has been shown that the reliability versus spares curve of
M-trees is greater than that of RAE [4]. The reason for this is

that the RAE scheme allocates an entire spare to the root,

whereas M-trees can "spread" the spare out into level I (or

more) nodes. At lower levels, however, the number of

nonredundant nodes per spare is the same. Consequently, as i

and/or k increases, the reliabilities of both schemes converge.
In contrast, the next section demonstrates that the SOFT

approach always results in superior reliability over MSA
designs.

B. Reliability of SOFT Trees

The reliability of a redundant system composed of nodes

with equal reliability R. which is not subject to degraded

performance, can be thought of as a polynomial of degree
(2 i- , _ l + k) where there are (2'" _ - I _- k) nodes in the

system. The polynomial can be expressed as

R_,=oe0R 1:'-_ -I'kJ+a_R(-" ,-t-i.k,- _(1 - R)

+ "'" + %R_Z'_" I- I'_-'_(l -R)J

+"'+otl:i.t_i._(l-R) c''-' _-_)

where R is the reliability of individual components, and % is
the number of ways in whichj reconfigurable faults can occur

in the tree (% = 0 for j > k). For comparison of _. an %

from a SOFT reliability equation is denoted as %,. whereas,
q/,,, is associated with the optimal MSA reliability.

In order to analyze SOFT reliability, it is necessary to

calculate the number of possible processor locations for the jth

faulty processor to occur given that j - 1 faults have already

been successfully reconfigured. This is dependent on the

specific SOFT implementation: however, using the following
identity, a lower bound on the number of possible locations for
the jth fault is derived in Theorem 7.

ll'

2i÷1
Number of nodes per SST (including the spare) = _.

k

lfa given SOFT or MSA tree containsj - 1 specific fault

and the tree has not failed, then the location of the fauh

processors (fault subset) is referred to as an otj_ _, or aj_
scenario, respectively. In SOFT, if j - 1 faults have bee

reconfigured, this implies that the associated spares ofj -

SST's are configured in (or failed), and k - j + 1 SST's hay
associated spares which are not used.

Theorem 7: (k - j + l)((2_÷t/k) + 1) is a lower boun,

on the number of reconfigurable faults from an otj_ ,, scenario
Proof." In each of the k - j + 1 SST's which has it_

associated spare unused, at least (2 _+I/k) positions for thejtl"

fault exist, which can be reconfigured. If in otj_ t, the father ol
one of the k - j + 1 SST's has not yet failed, then the failure

of the father can be tolerated and 1 can be added to 2 _" I/k as

the number of locations for k - j + 1 of the SST's. If the

father has failed, however, then it must have been reconfi-

gured into a neighboring SST, which means that a fault in that

neighboring SST can be tolerated and the fssr'S reconfigura-
tion shifted into the SST with the free spare. The lower bound,
therefore, remains valid. If two of the k - j + I SST's are

adjacent to the same father, then the father has been counted

twice in the lower bound. If the father f has not yet failed.

however, then the failure of _ is also tolerable, and by the
same analysis, the lower bound remains valid. []

Theorem 8: The reliability of a SOFT tree is always greater

than the reliability of an equivalent MSA tree for k (the
number of sparesi > 1.

Proof: If it can be shown that for at least one j, _-_s >

,%., and ej_ I> ,-%. for all other j, then R,yssoE. I. > R,y_MsA
(assuming that the reliability of individual processors is the

same for both architectures). Since o_0,,, = o% = I and cq,,, =
'_l_ = (2 i÷l _ I + k), R,y, with k = 0 or k = 1 is identical

for both schemes. Consider, however, _.,. MSA can tolerate
only one failure per module. As a result

((2"'-1 +k))((2,'__l+k)/k)_"" = 2 - k 2

where

and

a,_ >/ 2 - k .

Now consider %. Since ,_, > e,.,,,, it will be shown by

contradiction that 0% > %,, given that %_ _, > e__ b,,. From
the definition of o_, it is evident that if ,-%, i> 0%, at least one

fault configuration corresponding to a successful reconfigura-

tion ofj - 1 faults in MSA (denoted as a fault configuration in
%-_,,,) must have more possible locations for successful

reconfiguration of the jth fault than the possible locations for

the jth fault in an o_j_ ,, configuration.

Derivation of the number of "choices" for the jth fault to
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occur for each aj_ _in optimalMSA treesisstraightforward

and islessthan the lower bound of Theorem 7.

(2i_')-I+k))placesforj per a:_ i,,,= (k-j + I) _. . []

• Due to the analytical complexity of a global reconfiguration

strategy and the variety of possible SOFT implementations, a
closed form expression for reliability has not been found for

arbitrary size trees with arbitrary numbers of spares. How-
ever, the analysis presented in Section III is sufficient to

determine the reliability of any specific SOFT tree. The

following section presents some exact reliability calculations
for example SOFT implementations.

C. Reliability Examples

The reliabilities of four-level trees, implemented by M-tree,

RAE, and SOFT as a function of the number of spares, for R

= e -°at , t = 0.5, andt = 1.0, are shown in Table lI. It

should be noted that the SOFT reliability is superior even

when the modular schemes are allocated more spares. The

data for t = 1.0 are graphically displayed in Fig. 6. In Table

HI and Fig. 7, the reliabilities versus time curves of a tree with

no redundancy, duplicated four-level trees, and four-level

trees with four spares employing an optimal MSA. a SOFT

approach, and a tree with optimal reliability are presented. A

scheme with optimal reliability guarantees reconfiguration for

any number of faults less than or equal to the number of
spares. Table lII includes calculations for an RAE tree with

four spares and an M-tree with five spares. The M-tree

approach was allocated five spares due to its inability to
support four.

D. Increasing SOFT Reliability

There are several possibilities for enhancing the reliability
of a SOFT architecture. If a designer is not concerned with

VLSI layout issues or is willing to pay Otn log n) area, the

SOFT tree can be implemented such that the leaves are fully

connected and the full sharing of inter-SST spares is practical.
As an alternative, sharing of spares between the i = 4 leaf

subtrees is possible using the procedure of Horowitz and Zorat

[9]. A second option is the addition of redundant lines between

leaves which are adjacent to the same spare. This allows

reconfiguration of SST's with numerous faults, assuming that
the spares are available in neighboring SST's. The cost of

adding these lines is an additional k ltnes _where k is the

number of spares). Finally, for applications such as yield

enhancement, where processor yield may be quite low, _ 50

percent sparing is possible• In SOFT implementations with 50

percent sparing, spare and link placement is the same as in

Algorithms 1 and 2, with the exception that each spare is
associated with a single leaf and there are no cousin
connections between leaves.

E. SOFT Performance Degradation

The SOFT approach, as with the RAE technique, allows for

graceful degradation in performance. No redundant spares are
allocated for graceful degradation: however, redundant lines

TABLE H

RELIABiILTY FOR A FOUR-LEVEL TREE BY NUMBER OF SPARES
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Fig. 8. Reconfiguration in a 5-ary tree,

are locatedasdescribedby Algorithm 2. For SOFT architec-

turesa spareatthe rootisunecessary,incontrasttoprevious

gracefuldegradationapproaches [6].Since failuresare passed

tothe leaves,the only nodes which must assume thefunctions

of theirbrothersare the leaves.Also, as noted before,the

redundancy interms of linksisreduced and the reliabilityis

enhanced. The only failureswhich disablethe treeare long

runs of failuresalong the leavesand a failureof a node for

which no path of good nodes intothe leavesexists,i.e.,the

classof failuresdepictedinFig. 5.

V. SOFT N-ARY TREES

N-ary trees, in which each nonleaf node has N sons, are

more suitable for certain tasks than classical binary trees. For

example, 4-ary (quad) tree architectures have been proposed

for implementing several classes of artificial intelligence
related algorithms [15]. The following brief discussion sum-

marizes how the SOFT approach is applicable to N-ary trees.
A more complete description and analysis can be found in
[13l.

A. Construction of Reconfigurable N-ary Trees

1) Location of Redundant Lines: A link allocation

approach which is applicable to arbitrarily large N is to restrict
reconfiguration to displacement of the "outside" two children

of each nonteaf node. Redundant links to each of a node's

brothers are added only to the two outside brothers. The link

redundancy at upper levels is approximately (2N - 3)/N
percent.

2) Location of Redundant Processors: Allocation of up to
one associated spare per group of N brothers is allowed. The

spares are placed between SST's with connections from a

spare to both its associated SST and a neighboring SST.
Redundancy is, therefore,

2.V- 3
percent link redundancy-_

/
_=0

percent node redundancy-
N c

Ng

where N ¢ is the number of spares allocated to the tree, with
1 <_c_i- 1.

B. Reconfiguration

Reconfiguration is fundamentally the same as in bi:

trees. A sample reconfiguration for four failures in a 5-ary
is illustrated in Fig. 8.

VI. CONCLUSIONS

A unique approach to the design of reconfigurable

architectures has been presented. The design allocates sp_

at the leaves of trees and allows sharing of spares betw

subtrees. The architecture has O(n) VLSI layout for bin

trees and is directly extensible to N-ary trees. A lower bo_
on reliability for a SOFT tree was shown to be more relia

than all modular sparing approaches, with significantly 1

redundancy. The SOFT architecture provides for reconfigu
bte trees which tolerate both link and switch failures. "7

virtual displacement concept with sharing of spares betw,

clusters of processors is also applicable to other concurr
architectures.
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ABSTRACT

A new technique, based on virtual backpointers, for local concurrent error detection and

correction in linked data structures is presented in this paper. Two new data structures, the Vir-

tual Double-Linked List, and the B-Tree with Virtual Backpointers. are described. For these struc-

tures, double errors can be detected in O(1) time and errors detected during forward moves can be
corrected in O(1) time. The application of a concurrent auditor process to data structure error

detection and correction is analyzed, and an implementation is described, to determine the effect on
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I. INTRODUCTION

Linked data structures form an integral part of many software and database systems. Per-

forming error detection and correction to preserve the correctness of data structures is important in

achieving overall system reliability. To reduce the performance degradation incurred through their

use, detection and correction should ideally be executed concurrently with normal processing, and

every invocation of these procedures should be completed in 0(1) time. If any global checking

information (e.g.. a global count) is used in detection or correction, then O(n) nodes must be

accessed, where n is the number of nodes in the structure, and those procedures cannot run in 0(1)

time. In addition, since node access time is the major contributing factor to the cost of error detec-

tion. the number of nodes accessed should be minimized. The Checking Window concept is intro-

duced in this paper as a method of formalizing these ideas, and as a method of describing local con-

current error detectability as a function of the number of nodes to be checked. To preserve the

structural integrity of linked data structures, a new approach to detecting and correcting structural

errors, called the virtual backpointer, is also introduced in this paper. The technique is used to

construct two new data structures: the Virtual Double-Linked List and the B-Tree with Virtual

Backpointers. The Virtual Double-Linked List uses the same amount of storage as the double-

linked list from which it is derived. The B-Tree with Virtual Backpointers. derived from the B--

tree of order m, requires m+4 more fields in each node. It is shown that O(1) local concurrent error

detection can be performed for both structures, and that 0(I) correction is possible for those errors

detected during forward moves through the structures. Correction for those errors detected during

backward moves through the structures is in worst case O(n).

The foundation work concerning robust data structures was performed by Taylor. Morgan.

and Black [I]. Several techniques have since been presented to achieve robust data structures; how-

ever. most achieve error detection in O(n) time. A global count, as used by Taylor, Morgan and

Black in the modified(k) double--linked list, the chained and threaded binary tree, and the robust

B-tree [I-3]. by Munro and Poblete in their isomorphic binary tree [4]. by Sampaio and Sauv_ in
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their robust binary tree [5]. and by Seth and Muralidhar in their rood(2) chained and threaded

binary tree [6], necessitates, for some errors, a traversal of all the nodes of the structure fo/" error

detection. The three pointer tree. as explained by Yoshihara et aZ. [7] requires O(r_) time to detect

double errors, since a preorder traversal of all the nodes of the tree is performed. Though not indi-

cated in their paper, error detection can be performed in 0(1) time using the D-loops within the

structure, but only single errors can be detected. Kuspert's work with the Separately-chained hash

table [8], which is an application of double-linked lists, achieves detection in 0(1) time; however.

five extra fields must be stored in each node.

A general theory of local detectability and local correctability has been introduced and for-

realized by Black and Taylor [9]. and has been successfully applied to several different types of

data structures, including: the spiral(k) list [9]. the LB-tree [9-10], the rood(k) list [11]. the

helix(k) list [12]. and the AVL tree [13]. The intention of their work is to be able to correct an

arbitrary number of errors in a data structure, provided the errors are su_ciently separated from

each other. However. the complexities of the correction algorithms (which include error detection)

are typically not 0(1).

The organization of this paper is as follows. Section II presents an analysis of local concurrent

error detection, giving formal definitions for Checking Windows and local concurrent error detecta-

bility. In Section III. the virtual backpointer concept is described and is used to construct two new

data structures: the Virtual Double-Linked List and the B-Tree with Virtual Backpointers. The

local concurrent error detectability and correctability of each structure is analyzed. Section IV

describes a concurrent auditor process as applied to data structure error detection, analyzes its

effectiveness in increasing the mean time to failure of a system, and presents the results of an

implementation. Finally. Section V summarizes the results.
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II. LOCAL CONCURRENT ERRORDETECTION AND CORRECTION

Local concurrent error detection (LCED) is an on=line technique for detecting structural errors

in a locality of a currently accessed node in a linked data structure. If the size of the locality is

constant and the degree of each node is fixed, then an LCED procedure will run in O(I) time. Zocal

concurrent error correction (LCEC) can correct errors detected by an LCED procedure, using

another locality of the currently accessed node (not necessarily the same as that used by the LCED

procedure). If the size of the locality is again constant, then an LCEC procedure will run in O(1)

time. Error detection and correction typically degrade system performance. The degradation is a

function of the number of nodes accessed, the number of nodes stbred, and the computation

required, for detection and correction. For the LCED procedures analyzed here, no extra node

accesses are required (except in the initialization phase). Hence, the storage and computation

requirements dominate the cost of error detection and correction.

Linked data structures may be modeled as directed graphs. A graph G = (N. E) consists of a

finite set of nodesN= {N I.N2.....Na ] anda finite set of edgesE ={E 1.Ea,-...Em]. Each edge

E i = <Nj, Nk> links a pair of ordered nodes in this directed graph (digraph). In the digraph

representation of a linked data structure, the nodes represent the data records, and the edges

represent the pointers between the records. If all the nodes consist of the same fields, then the data

structure is said to be uniform. A move from a node Nj to a node N k is possible if there exists an

edge E i between them, and is represented.as Nj-*Nk. Then N k is rectched from N] by following E_. A

traversal is a series of moves starting at a root node or header of a structure that accesses part or all

of the data structure.

An LCED procedure is invoked to detect structural errors whenever a move attempts to fol-

low a pointer, which may be a forward pointer, a backward pointer, or a virtual backpointer (Sec-

tion Ill). That is, the LCED procedure attempts to ver/fy the move. Thus, it is on-line, or con=

current with normal structure access.
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The errors considered in this paper are those that affect the structural information of the data

structure (e.g., pointer values, structural checking information). The probability of an erroneous

pointer to a random location remaining undetected by the techniques presented in this paper is pro-

portional to 2 "_ , where b is the number of bits used to represent a pointer, and d is the number of

erroneous pointers required for masking. Since this probability is very low, the error detection

analysis concentrates on the case where erroneous pointers point to other nodes of the same type-

This kind of error may occur in partially or incorrectly updated data structures, or as a result of

software errors or hardware failures. These erroneous pointers may or may not coincide with logi-

cal pointer boundaries; however, the routine that accesses nodes from slow memory can detect

these boundary errors and supply this information to the LCED procedure.

Memory subsystems are commonly configured hierarchically, and the ratio of the access time

of slower memory (used to store the data structure, e.g.. MOS RAM, disk) to that of faster

memory (used to buffer the currently accessed nodes, e.g., cache, register file) is usually very large.

Hence it is desirable to have all the nodes in the LCED or LCEC localities stored in the fastest

memory. In the remainder of this paper. A i will represent the address of a node N i in a linked data

structure. N l may have many pointers to other nodes, and a desired move MY from N t will be

represented as Nt-,NMv.

DEFINITION I: R c is a fast memory of capacity c nodes, which holds the c most recently

accessed nodes, including the node reached by the current move MV. Since a move is performed

between two nodes, c must be at least two to verify the move. That is. for a move MV Ni-.NMv.

R c holds both N i and NMV. If c = 1 then only NMV could be stored, and the information of the

source node N i (e.g.. address, pointer value) would be lost. Thus. an erroneous move would be

indistinguishable from a correct move.

The LCED procedure requires a set of c nodes to verify the move MV. This set of nodes is

called a Checking Winzfow. The cost of a Checking Window is proportional to c. since it involves

storing the required nodes in the fast memory (storage cost) and performing checks on those nodes



(computation cost). The nodesin the CheckingWindow neednot

memory,sincethey arealreadystoredin Rc.

DEFINITION2_ Let a set of Checking Windows of size Co W _ .

5

be re-accessed from slow

be defined recursively as:

c-i jth
x'V_ = {W; -1 U Nk} where Wj is the Checking W_ndow 6f "vV¢-1 (1 _ j _< [ W_-I[ ) and N k

c--I

Wj is adjacent to one of the nodes in W; -l. The base case is W 2 = {{Nf. NMV}}" []

c

_V m, for some m, is constructed by adding one more node N k to the smaller Checking Window

c--i ¢--I c

Wj , such that N k can be reached from Wj in one move. All such W m form a set of sets. _,V_ . It

will be shown that Checking Windows of the same size do not necessarily achieve the same detecta-

c
bility. When the context is clear, we may use W" to represent one particular Wj.

EXAMPLE I: Consider a forward move Ni_Ni+ I in a normal double-linked list (Figure 1):

2

W l = {N i. Ni+ 1}

W _ = {W_]-= {{Nl, Nl+l} }

3

W 1 = {N 1. Ni+ 1. Ni+2}

3
W 2 = {Ni_ 1. N i. Ni+ x}

f- ......... --:--

A,+,[P.,18 +,J
,

2

WI

3

-_ W 2

_.3

....... .JWI 3

Figure I. Checking Windows for a Double-Linked List.



Wa= {W_.W_} = {{Ni. Ni+P Ni÷_}. {Xi_l. Ni. Ni÷l}}

etc. O

TheLock and Key concept is now introduced as a generalization of structural checking infor-

mation that is distributed throughout the nodes of linked data s'.ructures (distributed checks). In

the simplest case. nodes in the structure will have associated with them a Key. When performing a

move from a node to its child, the node's Key becomes an argument to the child's Lock function.

which either returns =True," signaling a valid move. or "False." signaling error detection. In its most

general form, the Lock and Key concept allows for multiple-Key Locks and Keys distributed over

potentially many nodes.

DEFINITION 3" A Key is information associated with a node (e.g., its address, a pointer, or dis-

tributed check) that is used by a checking function to verify a move. []

DEFINITION • A Ldck, LOCkMv. is a checking function that verifies a move, such that

LOCkMv(Key I. • • • . Key_) = "True" if all its Key i arguments are present and correct. "False" if all

its Key i arguments are present and not all are correct, or "X" {don't care} if not all its Key i are

present. A Lock whose Key arguments are all present is called a checIcel_le Lock, otherwise the

Lock is an tmc/_eckaS/e Lock. G

The computational overhead to evaluate the checkable Locks is 0(1) if all LOCkMv are defined

c

on Keys that can be contained in a fixed-size Checking Window W i . No storage overhead is neces-

sary because Locks are functions and are not stored, and Keys can be information that is already

present in the node, e.g.. pointers.

DEFINITION 5" A Circl_ar ko¢:]c. CLockN _Nx. is a Lock function whose Keys are addresses of

nodes:

Keys = < A i. A_ >

CLockN _Nx(X, .y) = (x ?= g(.y}}

where -_ is a pointer (e.g.. a forward pointer, a backward pointer, a virtual backpointer} of N i to
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N k, g is a function that generates x using a series of pointers, and ?= represents a comparison that

returns either "True" or "False" for a checkable CLock. []

Circular Locks possess the property that for all starting nodes N i. any single pointer error

encountered in the moves of g causes the Lock to evaluate to "False." The following two examples

show that the double-linked list and a binary tree with signatured access paths employ Locks and

Keys. The double-linked list uses a Circular Lock checking function, while the tree with signa-

cured access paths uses a Lock defined on O(height-of-tree) Keys.

EXAMPLE 2: Let N o. NI, • • • , Na be the nodes of a double-linked list.

forward pointer Pi and a backpointer Bi. For a forward move Ni==.Ni+I:

Let a node N i have a

Keys = < Ai. Al+ 1>

CLockN--Nh, I(X, y) = (X ?= g(y)) = (X ?= y.B).

The backpointers are the distributed checks, and the g function in the Circular Lock retrieves the

backpointer B from the node at y. This structure achieves O(1) single pointer error detection in

2
Checking Window W I (of. Example i). r')

EXAMPLE 3: In the signatured access path technique, signatures defined over the nodes of valid

traversal paths are embedded at path termination points, where a traversal path starts at a header

and ends at a leaf, for a binary tree [14]. Error detection is achieved by comparing signatures gen =

erated at traversal time with the embedded signatures. A simple signature is the logical exclusive-

or function (@) of all the pointers in the valid traversal path.

Keys = <ordered set of pointers in a valid traversal path. signature>

L°cktor_vird(P_ ' " " " ' Pk" signature) = (pl@ • • • @pk(_signature ?= 0).

Fhe nodes" pointers are the distributed checks. This structure cannot guarantee O(1) detection time

_s O(height--of=tree) nodes may be accessed in the traversal path. C2



We now determine the minimum number of errors that are required to cause the checkable

Locks used by the LCED procedure to evaluate to "True" in a particular Checking Window. This is

similar to the changes used by Taylor, Morgan and Black [15] to determine the distance between

two data structure instances. The difference here is that the distance is measured within a Check-

ing Window. Hence this new distance is termed ZocaZ distance, from which the definition of local

concurrent error detectability follows directly. Let LOCkMv be defined, for every possible move

MV in a specific data structure, over Keys distributed in nodes contained in a fixed-size Checking

Window.

DEFINITION 6: The/oct,/d_staru:e. d_(MV), within'a Checking Window of size c is defined as

the minimum number of pointer errors in all W_ that can mask a move to an incorrect node. due to

a pointer error, where M'V is the move to the correct node. Errors are not detectable if all check-

able LOCkMv evaluate to =True." []

DEFINITION 7: The Local concurrent error detectability, D c (MV), for a specified move MV and

Checking Window of size c is given by:

D_(MV) = max(d[(MV))- 1, 1 _< j -<<Iw'{. []

The max function is used because, for a specified move, it is always possible to find a Check-

¢

ing Window Wj which can detect at least D ¢ simultaneous errors (including the pointer from N i to

NMV that is erroneous). When the context is clear, we may omit the parameter MV in d_(M-V) or

D r (MV).

The following theorem will be used to prove that the local concurrent error detectability of

data structures employing the vixtual backpointer is the same for both forward and backward

moves.

TI_oP._ 1: In a uniform data structure, if for every pointer of the form Ni-*N k there exists

a -- pointer to reach N l from Nt in one move, and the Lock functions are Circular Locks. then

using an LCED procedure. D" (Ni--*N k) = D r (Nk---N i) = D _ .
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PROOF:.Sincethe datastructure is uniform. Ni--N k and Nk---Ni representall possibleforward

2 c
and backward moves, respectively. Notice that W 1 = [Ni. Nk}" Thus. all Wj are also the same for

c 2

both moves as Wj is defined on W 1. If Ni--*N _ is erroneously changed to Nt--Nz. , it is isomorphic

to the case Nk_N i being changed to Nx---Ni.. because the pointers used in the g function of the Cir-

cular Lock are not changed by the isomorphism. In both cases, the Locks evaluate to the same

¢ c c

value because the accessible nodes in Wj are the same. By Definition 6. dj (Ni--,Nk) = di (Nz--.NI).

Hence DC(N[-,Nz) = DC(N ._Nl) = D c. [3

Theorem 2 will be used in determining the upper bounds of local concurrent error detectabil-

ity for the Virtual Double-Linked List and B-Tree with Virtual Backpointers.

THEOREM 2: Local concurrent error detectability is a monotonically increasing function of

window size c. That is. D c-l ,,< D c _< D n for 3 _< c _ n, where n is the total number of nodes in

the data structure.

PROOF:, Every W_ is constructed by adding one adjacent node N_ to a Checking Window of

¢ c--I
c--I

size c-1: W m = Wj U N_. If each checkable Lock in W; -I evaluates to "True" in Wj then it

¢

will remain "True" in W m because the Keys of the Lock are contained in both W_ -l and W_. If the

addition of N_ causes an uncheckable Lock in W_-' to evaluate to "True" or "X" in W_, this results
c C_I

C C_].
in d m - dj • However, if the uncheckable Lock evaluates to "False.* then drn _> dj . since at lea_

one other error would be required to mask the detected error. Hence, d m /> _-l cc dj . Then max(din) >i

c-l D c-1
max(dj ). and D _ /> follows from Definition 7. The upper limit of detectability is trivially

D n , since the entire structure is then included in the Checking Window. FI

If the Checking Window includes all the nodes of the structure. LCED procedure degenerates

into a global error detection procedure, which requires O(n) execution time. Therefore, to achieve

c

maximum local concurrent error detectability, it is sufficient to use a Wj with minimum size c for

which D _ = D ".

The LCED procedures mentioned throughout this section were unspecified because the actual

procedure used depends on the particular data structure to be checked. The general LCED
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technique is as follows. First, determine the appropriate Checking "Window Wj that achieves the

desired local concurrent error detectability. For each possible move from each node, identify the

Lock functions and associated Key arguments that are used to perform the checking. The LCED

procedure can be constructed as follows: for each move made, access the nodes defined by the

Checking Window, and evaluate all the checkable Lock functions. If all Locks return "True," then

either no error has occurred or undetectable errors have occurred; if any Lock returns *False," then

at least one error has been detected. Once an error has been detected by an LCED procedure. LCEC

may be performed. The upper limit of correctability is I-_]" However, the actual correctability

depends upon the data structure.

Since errors are detected and corrected based only on information from nodes in the Checking

Window. many other detectable errors may exist simultaneously throughout the data structure.

Although the local concurrent error detectability and correctability may only be one or two in the

window, the actual number of detectable and correctable errors may be much larger.

III. VIRTUAL BAC74POINTERS

The v/rtua/ 5ackpointer is a distributed checking symbol that can be used to achieve O(1)

LCED and 0(1) LCEC during a forward move. and 0(1) LCED and O(n) LCEC during a backward

move in many linked data structures. In addition, it can be used to generate a backpointer from a

node N i to its parent Nt_reat. In the general case, a virtual backpointer may point to an ancestor

Ni_o ¢ of a node N i. where N_r is an ancestor of N i if there exists a series of moves from

Naac_or to N L.

DEFINITION 8: In a linked data structure, let N,nc_ r be an ancestor of N i, and Qi be the set of

all pointers in N L. The v/rnta/ back/zointer V L = f(Qi, Aanc_r). where f is a function such that

Aanc_r = f'(Qi. Vi) = f'(Qi, f(Qi. Aa,¢_¢)). and f" is a companion function determined by f. In
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general,there may be vectors of virtual backpointers, Vi = f'(Qi, -_). which, after suitable transfor-

mation by f, point to vectors of nodes A.

O

The virtual backpointer has the following properties. 1) For a forward move Ni_Ni+1, Vi+1

provides checking information. 2) For a backward move Ni+l-,-Ni ' Vi+1 provides the backpointer

after transformation by f', and Q_ac=tor is used as checking information. Two example data struc-

tures employing the virtual backpointer are presented in the following subsections: the Virtual

Double--Linked List, which is derived from the double--linked list, and the B-Tree with Virtual

Backpointers, which is derived from the B-tree.

A. V'u-ma/Dc_b/__/.Z_

The Virtual Double-Linked Zizt (VDLL) is a data structure that employs the virtual back-

pointer and possesses local concurrent error detectability and correct, ability. Errors are detected in

0(1) time with an LCED procedure. For a forward move, detected errors may be corrected using

LCEC in O(1) time; for a backward move. detected errors may be corrected using LCEC in O(n)

time. The VDLL requires no more storage space than the double-linked list (DLL), and retains the

simplicity of the DLL. in that it is possible to move directly from a node to its parent, using the

virtual backpointer. This is not possible, for example, in the modified(k) DLL [I], for k t> 2. which

must access other ancestors of a node in order to reach the node's parent.

DEFINITION 9:. A Virt_ Double-LirJ<ed List is described as follows (Figure 2). In a linked

list data structure, let Ni_ 1 be the parent of N l, and Pl be the forward pointer of the N i. therefore

Qi - {Pi}- Let f({x}, y) - f'({x}, y) = x(Dy. then V i - pi@At_l - Ai+l@At_l. and At_ t - P_(DVj. where

@ denotes the logical exclusive-or function. Also. c header nodes No. N_I ' .,. ,N._+l are added,

where c is the size of the Checking Window. These header nodes are assumed to be always accessi-

ble by the LCED procedure. Note that N_+l = N=. []

The VDLL is created from the DLL by replacing its backpointers with virtual backpointers,

The same operation can be applied to the modified(k) DLL family [1], resulting in the modified(k)
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Figure 2. Virtual Double-Linked List (VDLL) of 5 nodes.

VDLL structures. It will be shown that each modified(k) VDLL achieves greater local concurrent

error detectabihty than the corresponding modified(k) DLL.

DEFINITION I0: A rnocli_ed(k)VirtualDoz_Ze-L_r_ed Listisdescribedas follows. In a linked

list data structure, let N__t be the k_t ancestor of N v and PL be the forward pointer of the N I. there-

fore Qi = {Pi}. Let f(x. y) -- f'({x}, y) m x_y, then V l = Pi@At_t = Ai÷I(_At_ t. and Ai_ k = Pi_Vi-

Also,max(k+1, c) header nodes,are:added. []

The possibleLocks and Keys of the VDLL can be identi_edas follows (Figure2). For a for-

ward move Ni--*Ni+l followingPv

Keys = < A t. Pl+lg)Vi+l >

CLock._i_Ni÷l(_,y )= (x ?= g(y ))= (_:7= y ),
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where g is the identity function. For the backward move Ni+I---N i following Vi+l(DPi+l.

Keys = <Ai+ 1. Ai>

CLockNl+l-yt(x, y) = (x ?= g(y )) = (x ?= y.P),

where g retrieves the pointer P from the node at y. Locks and Keys for the modified(k) VDLL can

be identified similarly. Using the results of the analysis of LCED, we now determine the local con-

current error detectability of the VDLL.

THEOREM 3: Using an LCED procedure, the local concurrent error detectability of the VDLL

is D2(forward) = D_(backward) = D 2 = 1, and Dc(forward) = De(backward) = D c = D 3 = 2. _/c

t>3.

PROOF:. Since the VDLL uses virtual backpointers and Circular Locks, by Theorem I,

D c(forward) = D c(backward). Consider a forward move MV. Ni--.N_+ I. following Pi- The LCED

procedure attempts to verify this move. A pointer that does not point to a logical node boundary

can easily be detected by the node access routine. Therefore consider only erroneous pointers that

lead to valid logical node addresses. Suppose that Pi is erroneous and leads to Nj+ I instead of Nt÷ I.

2 2

In W I - {Ni. Nj+l} 'dl = 2: either Vj+ I or Pj+I must be erroneous to mask the error in Pi- Assume

3 3 3._that Vj÷ 1 is erroneous (Figure 3a). In Wl = {NioNj+I. Nj÷2}, d1 = 2. However. in W 2

{Nt-1, N t. Nj+t}. V l will lead to the detection of the error in Pl, because following the backpointer

given by Vi(_P | will lead to a node Nt_ t instead of NI_ 1. and Pk-i ;e Nt" Therefore. V i must be

3
changed into the value Aj+l(gAi_ 1 to mask the error in Pv Thus d 2 - 3,

Assume now that Vj+ I is not erroneous, so Pj+t must be erroneous (Figure 3b). Consider

3
WI = {Nl. Nj÷ I. Nt+2}. The LCED procedure will not detect the error in Pl if PJ+I has been changed

to A):+z = Ai_)Vj+l. and Vk+2@P_+ 2 has been changed (via a change in either Vk+ 2 or Pk+2) to Aj+ 1.

2 3 3
The remainder of the analysis is similar to the case above, and gives d I = 2, d t = 3, and d 2 = 3.

According to Definition 7. D: = 1 and D3 = 2. Since the V'DLL can be changed to another correct

VDLL by three pointer errors (node deletion). D" = 2. where r_ is the number of'nodes in the strut-
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ture. By Theorem 2, Dc =2. Vc I> 3.
Z3

The above proof suggests that when moving forward NI--N,_t v following Pi, use

Wa = {Nprev, N i. NMV} as the Checking Window, where Nprev corresponds to Ni_ I in the proof; and

when moving, backward NI-_NM v following Pi@Vi. use W 3 = {Ni, NMV, Nnext} as the Checking Win-

dow, where Naext is the node reached by following PMv_VMv" By using these windows, double

pointer errors can be detected, or single pointer errors corrected (described below). The LCED pro-

cedure using this Checking Window evaluates four locks when moving either forward or back-

ward. For a forward move. the locks are: LI: Apt,, ?= PiGVi, L2: A i ?= PMv@VMv" L3: A i 7-- Ppr,v

and L4: AMv?-pi" For a backward move, lhe locks are: LI: Anex_?-PMV@VMv. L2:

A,_Iv ?= PiGV i. L3: AMy 7= Pn,xt and L4: A i ?-- PMV. (In the W 2 Checking Window. only two locks

are evaluated, namely A i ?= PMV_VM V and AMV ?= Pi for the forward move. and AMV ?--pi(_VI

and AI ?-- PMV for the backward move.) A comparison of local concurrent error detectability is

given in Table 1 for the V-DLL. modified(2).VDLL, modified(3) VDLL. DLL without a global

count, and modtfied(2) and modified(3) DLL without global counts [1], for various sized Checking

Windows. The local detectability of the modified(2) and modified(3) VDLL can be obtained using

Table I. Local Concurrent Error Detectability
of Several Linked List Data Structures.

Local

Detectabilit_r
D _

D_

D 4

D _

D b

D"

3TDI_I.

I

2

2

2

2

2

rood(2)
VD!.t.

0

1

2

3

3

rood(3)

VDLL

0

0

1

2

3

rood(2)
Dr r

0

I 1

2

3 4 1 2

mo_(3)
DT.r.

0

0

1

2

3
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the same analysis technique as that applied to VDLL. Any modified(k) VDLL achieves greater

local concurrent error detectability than the corresponding modified(k) DLL. For k > 3. no further

improvement in detectability can be made for either of the two families.

THEO_-M 4: Any single pointer error detected by a forward move in W 3 - {Npfev. N i. NMV] in

a VDLL can be corrected with an 0(1) LCEC procedure requiring at most one extra node access for

both diagnosis and correction. Any single pointer error detected by a backward move in

W 3 = {Nnex_. NMV. N t] in a VDLL can be corrected with an O(r_) LCEC procedure requiring at most

one extra node access for diagnosis.

PROOF:. Since the local concurrent error detectability for this structure using W a is D 3 - 2.

the upper limit of correctability is 1. Assume that a single error has been detected during a for-

ward move. The LCED procedure supplies the values of the four detection locks (Table 2a). and

three error indication values generated by a node access routine. NApr,v. NA i. NAMv. that indicate

out-of-bounds pointers or pointers that do not point to Iogica _. node boundaries, when used to

access Nprev. N i and NMV. respectively. There axe eight possible errors: I) Aprev error. 2) Pprev error.

3) A i error. 4) Pi error. S) V i error. 6) AMy error. 7) PMV error and 8) VMV error. To distinguish

the eight errors, the seven-tuple syndrome {L1. L2. L3. L4. NApr,v. NA i, NAMv} is constructed

(Table 2b). For the error-free case. the syndrome will be {True. True. True. True. True. True.

True). There are two cases of identical syndromes for different errors. In each case one extra node

is accessed to completely diagnose the error. N x is accessed by following PMV to distinguish a PMV

error from a Vmv error. Ny is accessed by following Pi@Vi to distinguish an Aprev error from a V i

error. Once the error has been diagnosed, correction proceeds as follows:

1) Apr,, error: correct value is Pi®V t.

2) Ppr,v error: correct value is A i.

3) A t error: correct value is Ppr,v-

4) Pi error: correct value is AMy.
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Table 2a.
Detection and Diagnosis Locksfor Forward Moves

in the VDLL using W a.
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LI
L2

L3

L4
i,

L5

L6

Detection Locks

A._, v ?= PiOV i

A 1?-- PMv(_VMF

AMY ?= Pi

Dia_aosis Locks

AMy ?= Px_Vx Access N x via PMV
A i7= Py Access Nv via P,OV,

Table 2b.
Error Detection and Diagnosis Syndromes for Errors Detected

by Forward Moves in the VDLL using W 3.

error

At_F_y

Pnrey

AL

Pi

V i

A.,av

PMV

VMy

L1

F

T

T

F
F
F

F

T

T

T

[ L2 I L3T T

T F

F F

T T
F T
F T

T T

T T

F T

F T

t IA NA.,..,.

T T

T T

T T

T T
T T
T T

T T

F T

T T

T T

NA t
T

T

T

T
T
T

T

T

T

T

N.4._¢
T

T

T

F

T
F

T

T

T

T

/.5

F

T

L6

T

F

5)

6) AMV error:

7) PMV error:

8) VMV error:

V i error: correct value is Apr,v(_P i.

correct value is Pe

correct value is AiOV,,_ v.

correct value is Ai_)PMv"

Assume now that a single error has been detected during a backward move. The LCED pro-

:edure supplies the values of the four detection locks (Table 3a). and three error indication values
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generatedby a nodeaccessroutine, NAnexv NAMv, NA i. that indicate out-of-bounds pointers or

pointers that do not point to logical node boundaries, when used to access Nnexv NMV and N i.

respectively. There are eight possible errors: I) Anex, error, 2) Pnex, error, 3) AMy error, 4) PMV

error, 5) VMV error, 6) A i error. 7) Pl error and 8) V l error'. To distinguish the eight errors, the

seven-tuple syndrome {L1, L2. L3. L4, NAnexv NAMv. NA i] is constructed (Table 3b). For the

error-free case, the syndrome will be [True. True, True, True. True, True. True}. There are two

cases of identical syndromes for different errors. In each case one extra node is accessed to

Table 3a. Detection and Diagnosis Locks for Backward Moves
in the VDLL using W 3.

L1

L2

L3

L4

L5

L6

Detec'rion Locks

A.._,7= PMv_VMv

AMy 7= Pi@Vt

A.av 7= P...,

/h 7= Pray
Di_ga_is Locks

A_,x, 7= Px@V x Access Nx via P,,_

A t ?= Py@Vy Access Ny via Pl

Table 3b. Error Detection and Diagnosis Syndromes for Errors Detected
by Backward Moves in the VDLL using W a.

error L1 L2 1.3 L4

An, = F T T T

P:,x_ T T F T

AMy T F F T

P._v T T T F
T T F F
T T F F

VMV T T T T
T T F T
T T F T

A i T T T F

Pi T F T T

V l T F T t T

NA.,_, NA_w

T T

T T

T T

F
T
F

F
T

F

T

T

T
T
T

T
T
T

T

T

T

T

T

T
T

T

T
T
T

T

T

L5

F

T

I:

L6

F

TT T T
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completely diagnose the error. N x is accessed by following Pncx_ to distinguish a Paex_ error from a

VMV error. Ny is accessed by following Pi to distinguish a Pi error from a V i error. Once the error

has been diagnosed, correction proceeds as follows:

1) Anex, error: correct value is PMv@VMv.

2) Pnex_ error: correct value is AMV.

3) AMy error: correct value is Paexv

4) PMV error: correct value is A i.

5) VMV error: To correct the error in VMV, first access the headers of the struc-

ture. Next, move forward, accessing nodes N o, NI. •.. , N_. performing W _

LCED and correcting single errors with 0(1) LCEC, until P_ = AMy. Then the

correct value of Vmv = AkGPMv.

6) A i error: correct value is PMv-

7) Pi error: correct value is AMv_Vi.

8) V i error: correct value is AMv@P i. {Z]

Note that for a forward move. both diagnosis and correction are O(1) time. and require one

extra node access. For a backward move. diagnosis is O(1) time (one extra node access) but correc-

tion requires O(n) extra node accesses in the worst case. Thus. O(1) LCEC is possible for an error

detected by a forward move. while O(n) LC-_C is possible for an error detected by a backward

move. The proof assumed that W a LCED was used: if W 2 is used instead, then diagnosis for both

the forward and backward moves ks still O(1). but correction for both moves requires O(n) LCEC.

B. B-Tre_ "with V'wtual gaclc_s

The B-Tree with Virtual Backpointers (VBT) of order rn is a data structure that possesses local

concurrent error detectability and correct.ability. Errors axe detected in O(1) time if the time com-

plexity is measured as a function of the number of nodes in the tree, i.e., n. For a forward move,
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detectederrors can be corrected using 0(I) LCEC; for a backward move, detected errors can be

corrected using O(Iog2,,rL) LCEC. The VBT requires m+4 extra fields in each node. and has the

additional feature that backward traversal can be performed without a stack, using the virtual

backpointer.

The underlying structure of the VBT is the B-tree of order m [16], which funds application in

the construction and maintenance of large-scale search trees. The B-tree has the following charac-

teristics:

I)

2)

Every node contains at most 2m keys, and every node except the root contains

at least m keys. The root contains at least one key.

Every node is either a leaf node. with no pointers to other nodes, or an internal

node, with pointers to other internal nodes or to leaf nodes.

All leaf nodes appear at the same level.

An internal node with k keys will have k+1 pointers to subtrees. The k keys

will be arranged in strictly increasing order, and keys in the ith subtree will be

.th
less than the i_h key. while keys in the i+1 _h subtree will be greater than the I

3)

4)

key.

.th

Let P_.j be the j pointer in node N i. Assume that each pointer requires one word of memory.

Therefore, each pointer is uniquely addressable by Ai. j (Figure 4a). The VBT is modified from the

B-tree in the following ways to achieve local concurrent error detectability.

1) A header node N O is created with Po,j - At.j for 0 _< j _< 2m.

2) V i, the virtual backpointer of N i. is defined as V i- Pi.o@Pi,1@ "'-

.th

@Pi_@Apmr,at.i where the j pointer in Npar,ntpoints to N i. For the special case

of the virtual backpointer from the root to the header. V l is defined on Ao.o.

even though all Pod point to N I.



3)

21

The keys of N{ (i.e.. Ki.l. Ki.2. • • . . K{2._) are arranged in a matrix (Figure 4b)

and the key check symbo_ Xi. j and Ytj are generated using a product code [17]

as follows:

Xi.j " Ki.(k-l)=÷l @ Ki.(j-1)m+2 _ " " " _ K{.(_1)m+_ . 1 x< j _< 2

Yi.j=Kij_Kiln+j . 1 _ j _ m.

Ki. ] is used to determine X,_,((_l)/,,,)+ t and YL.(j-1) modrn+1, called its

corresponding X and Y check symbols, respectively.

The number of key fields used in N i is called c.ountl, which is added for performance enhance-

ment. A VBT of order 2 is illustrated in Figure 4c. The possible Locks and Keys of the VBT can be

Ah
identified as follows. Assuming the j

pointer of N i points to N k, for a forward move NI-,N k fol-

lowing Pi.j.

Keys = < Ai.j. (Pk.0Opk.x @ ... @P_@Vk) >

CLockN-N (x. y) = (x ?= = (x ?= y).

where g is the identity function. For the backward move Nk---N i following (Pk.oGpt.1@

Keys = <Ak. Aij>

CLoCkNk_Nl(X. y) = (X ?=g(y)) = (x ?= y.Pj).

where g retrieves the jth pointer P|.j from the node at y.

We now determine the local concurrent error detectability of the VBT. employing the results

of the analysis of LCED. Using Theorem 2. Table 4 presents the possible key and pointer errors

that can occur in the VBT (errors in the count field are covered by the fifth and sixth rows of the

zable), and the number of errors required to mask them. assuming an LCED procedure is used.

THEOR_-M 5: Using an LCED procedure, the local concurrent error detectability of the VBT is

D z D 3= land =D c =2, Vc t> 3.
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Figure 4c. Order-2 B-Tree with Virtual Backpointers (VBT).
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PROOF:. From Table 4. the minimum d = 2 and the minimum dj = 3. _f c t> 3. From

Definition 7, it follows that D 2 = 1 and Dr = 2. V c >I 3. O

From Table 4 it can be seen that no increase in the local concurrent error detectability can be

gained by using V¢c for c I> 3. It can be shown that when moving forward Ni_NMv following Pij,

or when moving backward Ni---N/vlv following (PMv,0@PMvA@ ... @PMv;.m.@VMv), use

Wa = {Npr,v, Nv NMV} and W 3 = {Ni. NMV, Naex_} respectively, to achieve detection of double

pointer errors, or correction of single pointer errors (described below). In the window for the for-

ward move, Nprev is the parent of N i. and in that for the backward move, Naext is the parent of

NMV. The LCED procedure using this window evaluates four locks. For a forward move, the locks

are: LI: Aprev.r 7--Pi.oQPi.l(_ "'" (_Pi2.m@V i. L2: Ai. ] ?= PMV.0@PMvA@ "'" @PMvy._@V_ v. L3:

A t 7= Ppr,v.r and L4: AMy 7= Pi.j- For a backward move. the locks are: LI: An,xt a 7= pMv.o@PMv.1 @

• " " @PMvy._@VMv. L2: AMV.t 7= Pi.oQPi.l(_ • • • (_pi2m@Vi, L3: AMy 7= Pn,x_._ and L4: A i 7= PMv.v

(In the W 2 Checking Window. only two locks are evaluated, namely Al. j 7= PMv.o@PMv.I @ ...

@PMvy.m@VMv and AMv .9_--Pij for the forward move. and AMv._ 7= Pi.o@Pi.l@ ... _piy.m@V i and

At ?= PMv._ for the backward move).

Table 4. Analysis of Errors in the VBT.

Non-empty VBT becomes empty

Empty VBT becomes non-empty
Key. X or Y becomes erroneous

Internal node's non-null pointer points to incorrect node

Internal node's non-null pointer becomes null

Internal node's null pointer becomes non-null

Two of internal node's Dointers exchanged
Internal node becomes a leaf node

Leaf node becomes an internal node

2m+1

2m+2

3

2

6

6

2

3

2m+1

2m+2

6

7

4

3

3

max(d,')

2m+1

2m+2

3 3

3 4
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THEOREM 6: Any single pointer error detected by a forward move in W 3 = {Nprcv, N i. NMV}

can be corrected with at most 2m+1 extra node accesses in 0(1) time. Any single pointer error

detected by a backward move in W _ -- {N I, NMV, Nnext} can be corrected in O(log2_n) time if it is

detected during a backward move.

PROOF:. Since the local concurrent error delectability of this structure in W _ is D 3 - 2. the

upper limit of correctability is 1. Assume that the error detected is a single error. The error may

be a key, a key check symbol, a cou_ or a pointer. For the key or key check symbol error, diag-

nosis and correction are performed using the procedures for product codes [17]. For a counz error,

all the keys and key check symbols will be correct, hence counting the non-null keys will regen-

erate the count.

For the pointer error, if the erroneous poLnter is located at the header node, it can be corrected

by simple comparison because there are 2m+1 >I 3 identical pointers in the header. Otherwise,

there are two cases: detection by a forward move and detection by a backward move. Assume that

the error has been detected during the forward move from N l to NMv following Pi.j- The LCED

procedure supplies the values of the four detection locks (Table 5a), and three error ihdication

values generated by a node access routine, NApr_,, NA i, NAMv. that indicate out-of-bounds pointers

or pointers that do not point to logical pointer boundaries, when used to access Npr,v.N iand NMV.

respectively. There are nine possible errors: 1) Apre, error. 2) Ppr,v# error where Pprev# is the

pointer from Npfev to N i, 3) A i error, 4) Pij error, 5) Pi_ error for 0 _< s _ 2m and s _ j, 6) V i

error. 7) AMy error, S) PMv.t error for 0 _< t _< 2m, and 9) VMv error. To dLs-tinguish the nine

errors, the seven-tuple syndrome {LI, L2. L3, L4. NApr.,, NA i, NA_ w} is constructed (Table 5b).

For the error-free case, the syndrome will be {True. True, True, True, True, True, True}. There are

two cases of identical syndromes for different errors. In each case extra nodes are accessed to com-

pletely diagnose the error. The nodes N x are accessed by following all the pointers PMV,_ from NMV

tO distinguish a PMv., error from a VMV error. Ny is accessed by following Pi.o@Pi.1@ • • • @Pi_@Vl

to distinguish an Apr,v error from a V l error or a Pi_ error. The latter two errors are distinguished
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Table 5a. Detection and Diagnosis Locks for Forward Moves
in the VBT using W 3.

L1
Detection Locks

A=_ev- 7-- Pi o@ • • • @Pi 2_@V i
L2

L3

L4

L5

L6

L7

Ai.i 7= P._V 0@ " " "@PMv 2m@VMv

Ai ?= P_ew

AMy 7= Pii

Diagnosis

t t t
l'I (AMv.t ?= Px.0@" ••_Px2,.QVx)
_--9

A t 7= Py.

s---o

Locks

t

Access N x via PMv.t for 0 _ Z _ 2m

Access Ny via Pi o@ • • • _Pi2,n_t)Vi

$

Acce._ N z via Pi.1 for 0 _< s _< 2m and s ;_ j

erTor

ADf_V

A i

Pi.j

Pi_ (s _ j)

V i

AMV

P.,,w.;

V-'_V I

Table 5b. Error Detection and Diagnosis Syndromes for Errors Detected

by Forward Moves in the VBT using W 3.

L1

F

T

T

F

F
F

F

F

T

T

T

L2 I L3 L4

T T T

T F T

F F T

T T T
F T T

F T T

T T T

T T T

T T F

F T T

/: T T

[ NA._.v

T

T

T
T
T

NAt

T

T

T

T
T
T

T T

T T

T T

T T

NAx.,

T

T

T

F
T
F

T

T

T

T

T

1.5 L6

- T

- F

- F

F

T

L7

F

T

by accessing the nodes N_ by following all the pointers Pi_ from N i. Once the error has been diag-

nosed, correction proceeds as follows:

i)
Aprev error: compute Aprev.r from Pi,o@Pi.1@ .. • @Pi2m@Vi, from which Aprev

can be calculated.
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2) Ppreva error: correct value is A i.

3) A i error: correct value is Ppr_v_-

4) Pij error: correct value is AMy.

5) Pia error: correct value is Apr,v_Pi.o@ - • • _Pia_l@Pia+l@ " " • @Pl_@Vi.

6) V i error: correct value is Apr,v_QPi.oQPi.1@ " " " @Pi.2,,"

7) AMy error: correct value is Pl.j-

8) PMV.t error: correct value is Al._PMv.o@ --- @PMv.__L@PMv._+I@

@PMv2_,,_VMv .

9) VMV error: correct value is AI.j_PMv.o@PMv.I@ " " " @PMv2._"

A_ume now that the error has been detected during a backward move from N l to NMv fol-

lowing Pi.o@Pl.,@ --- @Pl2._@Vl. The LCED procedure supplies the values of the four detection

locks (Table 6a), and three error indication values generated by a node access routine.

NAn,x_. NAMv, NAt. that indicate out-of-bounds pointers or pointers that do not point to logical

pointer boundaries, when used to access Naex_. NMV and N t. respectively. There are eight possible

errors: 1) An,x, error. 2) P_,x,_ error where Pa_x,_ is the pointer from Nan to NMV. 3) AMy error. 4)

PMV.t error for 0 _ t _< 2rn. 5) VMV error, 6) A t error. 7) Pl.j error for 0 _< j _ 2ra, and 8) V l error.

To distinguish the eight errors, the seven-tuple syndrome {L1. L2, 1.3. L4, NAnex,. NAMv, NA t} is

constructed (Table 6b). For the error-free case. the syndrome will be {True. True. True, True.

True. True. True}. There are two cases of identical syndromes for different errors. In each case

extra nodes are accessed to completely diagnose the error. The nodes NIx are accessed by following

all the pointers PL.Jfrom N l to distinguish a PL.j error from a V l error. Ny is accessed by following

P_,x_.o@P,ox_.I_•-• _Pn_m@Va,x_ to distinguisha P,_xtjerrorfrom a VMV erroror a PMv.t error.

The lattertwo errorsare distinguishedby accessingthe nodes N z by following allthe pointers

PMv.tfrom NMV. Once the errorhas been diagnosed,correctionproceedsas follows:



1)
Aaext error: compute Aa,xt _ from PMV,0@PMv,1_

which Aaext can be calculated.

2) Pn,x_ error: correct value is AMV.
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"'" _PMV2.m_VMv, from

Table 6a.
Detection and Diagnosis Locks for Backward Moves

in the VBT using W a.

_ Dezeczion Locks.---_

L_.__I A ?=po

L4 A. ?= P v

L5

L6

II (A,.j7=P_.oe..- eej,_.eVJx)
-_3at_.__

A .?=p

-...I=.-9_

Diagnosis Locks

Access NJx via Pi.j for 0 _< j _< 2rn

AccessN viaP @'''@P @V =A _"

t

Access N z via PMv: for 0 _ t _< 2rn

Table 6b.
Error Detection and Diagnosis Syndromes for Errors Detected

by Backward Moves in the VBT using W _.

error

2_M V

PMV.t

VMV

V l

T T F
T T F

T T T

v I _ T !
TIF Vl

T

T

T T

T T
T F

T T
T F

T

T "Y
T T

T

T
T

T
T

T

T

T

T

T
T

T
T

T

T

T

m

m

F

T

T F
T F

T T
T T



28

31 AMV error: correct value isPn,x_.s"

4) PMV._ error: To correct the error in PMV.v firstaccess the headers of the struc-

ture. Next. move forward, accessing nodes N o.N I. "-- .N k, performing V4_

LCED and correcting single errors with 0(I) LCEC. until Pk_ = AMy" Then

the correct value of PMV._ is Ak.,_)PMv.o@ "'" @PMv.,_I@PMv._+I@ "'"

QPMv _.__VMv-

5) VMV error: To correct the error in VMv, first access the headers of the struc-

ture. Next, move forward, accessing nodes N o. N I. - - - . N x, performing W 3

LCED and correcting single errors with 0(11 LCEC, until Pk_ = AMV- Then

the correct value of VMV isAk_@PMv.o_)PMv.I@ """ _)PMvm,"

6) A ierror: correct value isPMv.r

7) Pi.jerror: correct value isAMv.,@Pi.o@ •• • ePu__ePi.j+,e ••• eP_m.eVi.

8) V ierror: correct value isAMv.t@P_.o@Pi.:@ "•• @Pim," []

The robust B-tree [3] presented by Black. Taylor and Morgan performs double error detection

or single error correction in O(rt) time. and requires 2m+3 extra fieldsin each node of an order-m

B-tree. Taylor and Black have also developed the LB-Tree [10] which islocally correctable, in that

itcan correct many single errors if they occur in separate substructures. However. in order to ver-

ify a pointer, one level of nodes must be traversed, and to correct a pointer, all the levels above the

current level must be traversed. Hence. double error detection and single error correction require

O(n) time. and 2m+5 extra fieldsin each node of an order-m B-tree axe required. In comparison, the

advantages of the VBT are as follows:

11 Double pointer errors can be detected in the VBT using an 0(11 LCED pro-

cedure.

2) Single pointer errors can be corrected in the VBT using an O(1) LCEC pro-

cedure for an error detected during a forward move. or using an O(log_,0
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LCEC procedure for an error detected during a backward move•

The VBT requires only rn+4 extra fields in each node.

The virtual backpointer facilitates backward traversals of the VBT. which can

then be used to enhance performance.

IV. ANALYSIS AND LM]:'LEM:ENTATION OF A CONCURRENT

AUDITOR PROCESS

The Concur'rent Aud£tor Process (CAP) is an on-line process for error detection and correction

that runs in parallel with user processes accessing a database. It is used. in this case, to perform

data stz-ucture error detection and correction for the user processes, and a11ows concurrent access to

structures being checked to reduce the system performance degradation due to error detection.

Koved and Waldbaum have developed an auditor program that provides detection of computer

subsystem failures [18]. based on Waldbaum's concept of the auditor program [19]. Taylor, Mor-

gan and Black have suggested the use of an audit program to periodically perform error detection

and correction in data structures [1]. However. little analysis has been performed on the

effectiveness of such an audit program. This section presents an analysis of the effectiveness of the

CAP and presents measurements of the CAP's effectiveness in a Sequent Balance 8000 multiproces-

sor implementation using a database of VDLL.

The CAP described here accesses structures more frequently and uniformly than user

processes to reduce the latency of error detection. Also. the CAP performs error detection in

Checking Windows of higher cost than those used by user processes, to reduce their performance

degradation. For example, if the database is composed of VDLL or VBT instances, user processes

may perform single pointer error detection in W 2 with less computation cost. while relying on the

CAP to detect the less-frequent double pointer errors in W a with more computation cost. The

effectiveness of the CAP is determined by its increase o_ the mean time to failure (MTTF) of the
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system. Ideally, a large increase is achieved with little degradation of user process performance.

Hence, the CAP permits user processes to access structures being checked as long as they do not

insert or delete nodes from the CAP's current Checking Window. Expressions are derived to deter-

mine the MTTF in a multi-user, n-process system with and without the use of the CAP. This is

followed by the results of an implementation of the CAP using a VDLL clatabase.

A. Ana/y.ds

In a multi-user, n-process shared-database environment, assume that the CAP performs error

detection in W 3 and that user processes perform error detection in W 2. The pointer errors can then

be divided into three classes: E o, E I and F_. Eo errors are those which can be detected by a user

process or by the CAP. E i errors can be detected by the CAP but not by a user process. E2 errors

can be detected by neither a user process nor the CAP. Suppose the time for an E i error to occur is

T_, the time for a user process to encounter that error is T u. and the time for the CAP to detect an

E I error is T A. For the pu-,"poses of analysis assume, in a given time interval, both the number of

errors that occur and the number of accesses to a particular node are random variables following a

Poisson distribution. Then. random variables T_I, T U and T A follow an exponential distribution

with mean tlme _'i • _ and ¢x. respectively.

LEMMA 1" The probability of an E I error causing any of the n processes to fail in the presence

n

of the CAP is -- .

PROOF:, For a single process, the probability to fail can be derived using basic probability

theory:

Prob(TA>Tu) -- Prob(Tu=:_)Prob(TA>x)dx = e-XJ_e-X/adx _ .
o o
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Therefore, the probability of any of the n processes failing is 1--

"lh-lzo P..KM 7:

n

- =1-

0

n

Without the use of the CAP, MTTF : 71 +/3, and with the use of the CAP,

]'i 'I

PROOF:, If no CAP is used. /vI'UI_ : min(E(T_1), E(T_2) ) + E(Tu ) =
¢I

]'I + fl, where E(X) is the expected value of random variable X.

mm(]'1' 72) + # :

In the presence of the CAP. the determination of whether an E I error will cause a failure can

be modeled as a Bernoulli trial with parameter p : I-- . Hence the M'rTFcA P follows a

]'i

geometric distribution with mean _. where n' represents the effect of n user processes and the
P

CAP.

O

If E l and F__ errors are formed by the accumulation of Eo errors, then T_l and T_2 are propor-

n I i I
tional to the access frequency. Thus ],_'= n ],_.]`2 = n ]`2 and _,_ >> ]'i- This gives, for the

n i

without-CAP case, MTTF : ]'I +/3 = n ]'1 + fl- In the with-CAp case, since the CAP is /3 times

faster in checking the data structure than a user process, ]'1 : -F ]`:. F__ errors will retain an

exponential distribution but with different mean ]`2 : -b 7_- For this case the theorem gives

NITTFcA P : rain +_.
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I 1
EXAMPLE 4: Suppose ")'x = I00 hours, ?2 = 10,000 hours. ]3 = 1 minute, and 5 user processes

are active on the system. Without the use of the CAP. MTTF _ 500 hours. However. by using the

CAP, and with cz = I0 seconds, MTTF is increased to MTI_cA r =2050 hours. O

If a is small enough (i.e.. the CAP is fast enough), the term can exceed the

In+-_l_/_ term. In this ¢aseo MTTFc_= [n+-_l'/_+_-Thisett_ectively eliminates the chancesof

a user process failure due to E I errors, which occur more often than _ errors.

B. Im/_,.mZ_-

A model database of VDLL was implemented in C and run on a Sequent Balance 8000

shared-memory multiprocessor system with six CPUs. Single random errors and wor_-ca_ double

errors (called "double cooperative errors." where a second error masks a previous error) were

injected into the database one at a time. Error detection was accomplished by one of four user

processes, the database manager, or the CAP, each of which performed either W 2 or W 3 checking.

The database manager serviced all update requests, and the CAP operated in the idle time of the

database manager, to reduce performance degradation. Databases of 50, 100. 500 and 1000 nodes

were used in the simulations. Each database consisted of eight VDLL instances: six non-empty

instances, one empty instance, and a free lis_. To model the locality of user process database access.

each user process performed approximately 809o of its operations (composed of 75% searches. 12.5%

insertions and 12.5% deletions) within one VDLL, and the other 20?o in a randomly selected VDLL.

For each single or double error injected, the detection latency and the number of operations

completed in that time were measured, for five different combinations of user process LCED/CAP

LCED (Table 7). The mean error detection latencies for the Eve combinations, applied to databases
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of 50. I00, 500 and I000 nodes, are shown in Table 8. Table 9 shows by what factor use of the

CAP can decrease the error detection latency. The following observations can be made based on the

results of the implementation:

1) Single and double LCED dan be performed on the VDLL in 0(1) time.

2) The use of the CAP significantly reduces the error detection latency of both

single random errors and double cooperative errors.

3) The CAP is more e_ective in reducing the detection latency of single random

errors as the size of the database increases.

_ Fg
Using the analysis results of the previous section, the first observation shows that _,_ >i 5yi.

Thus from Theorem 5, the h/ITTFcA P > 5×MTTF. This clearly shows the utility of the CAP in

increasing the MTTF of the system.

V, S_y

In this paper, we have presented a new technique for local concurrent error detection in linked

data structures that can achieve 0(1) error detection in a variety of data structures. This tech-

nique uses the concept of a Checking Window to define the locality in which local concurrent error

detection is performed and also to determine the associated cost of the locality. The virtual back-

pointer was introduced and used to define two new data structures, the Virtual Double-Linked

List. which incurs no storage overhead, and the B-Tree with Virtual Backpointers of order m,

which requires m+4 extra fields per node. It was shown that double errors could be detected using

_l local concurrent error detection procedure in 0(1) time for both structures. In addition, those

errors detected during forward moves were shown to be correctable using a local concurrent error

correction procedure in O(1) time. Correction of those errors detected during backward moves was

shown to be, in worst case, O(a). Finally, an analysis and implementation of a concurrent auditor
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Table 7. Combinations of User Process LCED and CAP LCED.

Case User Process LCED

1 W 2

2 W 2
3 W 2
4 W 3
5 W a

CAP LCED

None
W 2

W 3

None
W a

Table 8. Mean Error Detection Latencies.

Error

Single
Random

Error

Double

Cooperative
Error

Databa_ Number of

Size Samples

50 I0000
I00 I0000
500 1800

I000 200

50 10000
100 10000
500 1800

1 2

Case
3 4 5

77 8 7 64 7
144 11 10 127 10

4884 147 134 5052 140
29087 372 308 31033 312

72 7 7 39 7
60 13 10 57 11

420 54 48 447 50

Table 9. Detection Latency Reduction Factor Through Use of the CAP.

Single
Random

Error

Double

Cooperative
Error

Database [ Case.sCompared

Size J 1:2 1".3 4:5
5O

I00
5OO

I000

50
100
5O0

10 11 9
13 14 13
33 37 36
78 94 99

I0 I0 6

5 6 5

8 9 9
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process in a shared database using the virtual backpointer technique was shown to significantly

reduce the error detection latency.
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This thesis describes measurement-based models based on real error-data collected on

a multi-processor system. Models development from the raw error-data to the estimation

of cumulative reward is described.

A workload/reliabilitymodel is developed based on low-level error and resource

usage data collectedon an IB_I 3081 system during itsnormal operation in order to evalu-

ate the resource-usage/error/recoveryprocess in a large mainframe system. Thus. both

normal and erroneous behavior of the system are modeled. The resultsprovide an under-

standing of the differenttypes of errorsand recovery processes.The measured data show

that the holding times in key operationaland error statesare not simple exponentials and

that a semi-NIarkov process is necessary to model the system behavior. A sensitivity

analysis is performed to investigatethe significanceof using a semi-Niarkov process,as

opposed to a Markov process,to model the measured system.

A software reliabilitymodel isalsodeveloped based on low-level error data from the

MVS operating system running on an IBM 3081 machine to describe the software error and

recovery process. The semi-Markov model developed provides a quantification of system

error characteristics anti the interaction between different types of errors. As an example.

we provide a detailed model and analysis of multiple errors, which constitute approxi-

mately 17% of allsoftware errorsand resultin considerablerecovery overhead.



iY

In addition, a measurement-based performability model based on real error-dam col-

lected is proposed. A reward function, based on the service rate and the error rate in each

s'_te, is defined in order to estimate the performability of the system and. to depict the cost

of different error types and recovery procedures.
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CHA.PTER 1

INTRODUCTION

1.1. ThesiJ Objective_

The development of realistic models to describe the error behavior of computer sys-

tems is a ditficult problem. Although many researchers have addressed the modeling issue

and have significantly advanced the state of the art. there is little or no validation of these

models with field data. It is. therefore, extremely valuable to model the error and recovery

Frocess in a producticn system using real error data. Apart from providing useful informa-

tion on how errors occur, this process also provides insight into the interaction between

various s3zstem components. Additionally. it w[lI be seen that it also allows explicit model-

in s of the relationship between resource usage and hardware and software errors, an area

that has yet to be fully explored.

In this research we build a state-transition model which describes the resource--

usage/error/recovery process of a computer system. This model us based on low-level error

and resource usage data collected on a production system. The data were collected on an

IBM 3081 system during its normal operation. Both the normal and erroneous behavior of

the system are modeled. The results, therefore, provide an understanding of the different

error and recovery processes and their relationship to various types of resource ',usage.

Hardware and software re!labilities and their interaction are akso modeled. Results show
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that the error and recovery process on our measured system is best described by a semi-

Markov process.

1.2. Related Research

The primary motivation for this research is that there has been no attempt to expli-

citly model the resource-usage/error/recovery process based on real data. The only

research is that in [1.2], where the authors proposed the use of a double stochastic Poisson

process to model a cyclic load-error relationship. The model assumes that the instantaneous

error rate can be described by a cyclostationary Gaussian process (i.e., the workload has a

cyclic pattern). Thus only the external behavior has been modeled. Furthermore. only a

single workload variable Crime spent in the kernel mode) was modeled.

J

Analytical models for hardware failure have been extensively investigated

[3.4,5,6, 7.8]. Although the time for different components to fail isusually assumed to be

exponentially distributed, time-dependent failure rates and graceful degradation have been

considered along with performability issues. Repairability has been modeled by Trivedi. et.

al..[3.5,6.$], all of which assume constant repair times. A job/task flow based model is

described in [9]. Failure occurrence is assumed to be a linear function of the service

requests from a job/task flow. As shown in [10], the assumption of linearity may result in

underc_-_imating the effect of the workload, especially when the load is high.

Most software reliability models usually refer to the development, debugging and

testing phases of the software as in [II, 12] and [13.14]. Few of these models have been

applied to the operational phase of the software. In [2] and [15], software failures in an

operating environment are studied. Both studies found that at least 60% of system failures
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are software related. Another study [16] shows that _etectea software-related errors are

due to either specification errors, implementation errors, or logic errors.

There is little explicit study of hardware/software reliability. The

hardware/software interface is generally hard to model and experimental measurements

are not easy to obtain and analyze. In [15]. software failures in the operating system,

which could be related to hardware problems, were analyzed and it was shown that errors

in the hardware/software interface are often fatal. In [17]. a methodology for joint

hardware/software model construction and model processing using Stochastic Petri Nets is

described.

With the exception of the software reliability growth models, which have been vali-

dated wish real data, there are few, if any, models of software reliability in an operational

environment. Exceptions include the hardware and software model discussed in [13] and a

measurement-based model of workload dependent failures discussed in [10]. Both, how-

ever. only describe the external behavior of the system and do not provide insight into corn=

Fonent level behavior.

It is therefore highly instructive to construct a detailed model based on low-level

error data from a production system. Toward this end we have const_=ucted a joint

resource-usage/error/recovery model using error and resource usage data collected from an

IBM system. The model provides detailed information on system behavior under normal

and error conditions. Hardware and software failures of di_erent severity are modeled.

Multiple errors and the effect of on-line recovery routines are also considered.
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1.3o Thesis Overview

A methodology for model construction based on real error data and resource usage

information is described in Chapter 2. The "model construction includes the resource usage

(workload) characterization, error and recovery characterization, and modeling the overall

system. For the workload characterization, we use a statistical clustering method to

characterize the collected resource usages of the measured system from an rz-tuple variable

of infinite points into a few number of sets. Thus, a state=transition model of resource

usages of the system is constructed based on these sets.

Different types of component errors and recovery procedures are also described in

detail and classiEed in Chapter 2. A two-level error data reduction scheme is employed to

identify individual error incidents and ensure that the analysis is not biased by error

records relating to the same problem. The interaction of hardware and software errors is

modeled in this chapter. The three models describing resource usage, error and recovery are

then combined to form an overall model. The conditional transition probabilities as well

as the sojourn times of states are estimated from real data. Results show that the

resource=usage/error/recovery process is a semi=Markov process.

In Chapter 3 we perform four different kinds of model analyses to show the charac=

teristics of the measured system. First, we use the model built in Chapter 2 to evaluate

key characteristics of the system, such as the state occupancy probability and the uncondi-

tional transition probability from one specified state to another. These measures provide us

with a very fair estimation of the model behavior. Second. we estimate the error probabil-

ity due to the workload from the model The analysis shows that the error probabilities

appear to be not only a function of the resource usage, but are also related to the length of

the sojourn time in a resource usage state. Third, the model validation is performed by
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comparingthe results predicted from the model with the values estimated from the actual

observations. Finally, we perform an analysis to investigate the significance of using a

semi-Markov process, as opposed to a Markov process, to model the measured system.

In Chapter 4 a measurement-based software reliability model is built. In addition to

describing the software error and recovery process in the measured system this model also

provides a quantification of software system error characteristics and the interaction

between different types of software errors.

A performability model based on real data is proposed in Chapter 5. A reward func-

tion, based on the service rate and the error rate in each state, is defined in order to estimate

the performability of the measured system and to depict the cost of different error types

and recovery procedures. The conversion of a semi-Markov model to its _Iarkov version is

also demonstrated in this chapter. This conversion gives us the ability to use an existing

system performance estimator to estimate the performability of the measured system.

In Chapter 6 we provide a summary of this research and highlight some important

conclusions drawn from this work.



6

CHAPTER 2

RESOUCE-USAGE/ERROR/RECOVERY MODELING

2.1. Workload Modeling

In this sectionwe build a state--tra_nsitionmodel to describe the variationin system

activity.It will laterbe shown that thisapproach allows an error to be considered as a

transitionfrom normal activity.System activityischaracterizedby a number of resource

usage parameters. A statisticalclusteringtechnique is employed to reduce the potential

many to many transitionsof the workload vector to a small number of statesrepresenta-

tiveof those found in the data. The data for our studiescame from an IBM 3081 system

running the MVS operating system. The system consistsof dual processors with two

time-multiplexed channel sets.Together these two sets allow a maximum of 24 subchan-

nelsto be simultaneously activeineach VO cycle.

2.1.1.Resource Usage Characterization

The workload data was collectedusing the IBM MVS/370 system Resource Manage-

merit Facility(RMF) [19]. RMF isa flexibletoolfor measuring the performance of an IBM

system, k measures data in two ways: by exact count and by sampling. The exact count

met.hod checks the appropriatesystem indicatorsat the beginning and the end of an interval

and calculatesthe difference.The sampling method checks the appropriatesystem indica-

torsat each cycle within an interval(e.g..an intervalmay be one hour and a cycle may be
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S00 milliseconds). At the end of the interval the mass of data collected at each cycle is

reduced to either minimum, maximum, and average values or to a percentage value. The

results presented here are based on three months of sampled R.'VIF data, with a cycle time of

500 milliseconds and an interval of one hour.

Four different resource usage measures were selected to represent the workload of

three basic components of the computer hardware system.

CPU

CHB

SIO

- fraction of the measured interval for which the CPU is executing instructions

- fraction of the measured interval for which the channel was busy and the

CPU was in the wait state (this parameter is usually used to measure the degree
of contention in our system)

- number of successful Start I/O and Resume I/O instructions issued to the
channel

DASD - number of requests serviced on the direct access storage devices

Although several other measures were available, we decided to use only the measures listed

above so as to keep the model trackable. The methodology presented here is easily extended

to incorporate other measures.

2.1.I Work/bad C1uszerimg

At any interval of time the measured workload is represented by a point in 4-

dimensional space. (CPU, CHB, SIO, DASD). C1u._er analysis is used to divide the work-

load into similar classes according to a pre-deEned criterion, t This allows us to concisely

describe the dynamics of system behavior and extract a structure that already exists in the

IPoten%iaily, we can have an uncouatably large number of points in :he workload space. Intuitively, only a

countable number of combinations of four measure_ do in fact occur. Further. it _ seen chat :hey usuatly occur inclusters.
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workload data. 2 Each cluster (defined by its centroid) is then used to depict a system state

and a state-transition diagram (consisting of inter-cluster transition probabilities and clus-

ter sojourn times) is developed.

A k-means clustering algorithm [21.22] was used for cluster analysis, Briefly. the

algorithm partitions an N-dimensional population into k sets on the basis of a sample. It

starts with k groups each of which consists of a single random point. Each new point is

added to the group with the closest centroid. After a point is added to a group, the mean of

that group is adjusted in order to take the new point into account. This process is repeated

until the changes in the cluster means become negligibly small. Thus at each stage the k-

means are. in fact, the means of the groups they represent. Therefore. k non-empty clus-

ters, C _.C: ..... C_, are sought such that the sum of the squares of the Euclidean distances of

Q

the cluster members from their centroids is minimized, i.e.,

71 Ix i-_/ II: -" minimum

/ffiJ. i

where x i _ C_ and _/ is the centroid of cluster Cj.

Two types of workload clusters were formed. In the first case CPU and CHB were

selected to be the workload variables. This combination was found to best describe the

CPU-bound load (nearly 60% of the observations have a CPU usage greater than 0.72). In

the second case the clusters were formed considering SIO and DASD as workload variables.

This combination was found to best describe the I/O workload. Table 2.1 shows the results

for these two cases.

An examination of Table 2.1 also shows the dynamics of the measured system

behavior. We see in Table 2.1(a) that about 36% of the time the CPU is highly loaded

2 Similar clustering "cechniquts are aL_o used for workload characterization in [20].



Table 2. I. Characteristics of workload clusters

I Clu_erid

WI

W2

W3

W4

W5

W6

W7

W a

R 2of CPU =

R 2 ofCHB -

overallR 2 -

% of

oh,

7.44

0.50

2.73

12.41

0.74

17.12

22.58

36.48

0.9724

0.8095

0.9604

(a) CPU workload

Meaal

of CPU

0.0981

0.1126

0.1547

0.3105

0.3639

0.5416

0.7207

0.9612

Mea.n

of CI.IB

0.1072

0.5525

0.2801

0.1637

0.3819

0.1287

0.0848

0.0168

IStd devof CPU

0.0462

0.0433

0.0647

0.0550

0.0365

0.0560

t 0.0576
0.0362

Std dev

of CHB

0.0436

0.0669

0.0755

0.0459

0.1923

0.0511

0.0301

0.0143

(b) lYO workload

Cluster 1%of [ Mean ' Mean ]Stdde_

id I[ ohm _ of DAS_ SIO

0.95

U 2 36.05 41.59 2.99

U 3 1.48 44.37 20.62

U4 1.73 60.07 38.84

t U 5 42.72 67.34 5.19

U 6 0.49 87.30 31.19

U7 7.9 96.20 6.02

U a 0.74 141.10 I0.10

R 2 of SIO - 0.8861

R 2 of DASD - 0.7176

overall R 2 = 0.8751

6.80

7.51

Std dev

of DASD

1.30

1.92

8.55 4.18

6.77 8.42

7.92 3.72

3.87 9.84

8.73 3.34

10.28 8.50
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(0.96) and almost 76% of the time the CPU load is above 0.5. Since the measured system is

a two-processor machine, we may say that 76% of the time at least one of the processors is

busy. Note that, with increasing CPU usage, CHB (CPU wait and channel busy) decreases.

This indicates that resource contention is not a problem in our measured system. In Table

2.1(b) (the UO load), both clusters U 2 and U 3 have a very close channel start UO rate (SIO)

but the disk service rate (DASD) of U a is as much as 10 times that of U 2. This indicates

that some L/O requests result in a burst of data while the others only in a few words. A

burst transfer however occurred only 4% of the time (U a + U 4 + U6). This result may be

due to the fact that our measurements were made during work hours, but L/O-bound jobs

are normally executed during off-work hours.

2.1.3. Resource Usage Model

State-transition diagrams of these two different types of workload clusters are shown

in Figure 2.1 and Figure 2.2. The transition probabilities from state g to state j. Pi.]. axe

estimated from the measured data using:

observed number of transitions from state _ to state j _2.1. i)

Pij = observed number of transitionsfrom state

These two figureprovide us with not only the detailsof workload dynamics but also the

interactions among clusters. Figure 2.1 shows that once the CPU load reached 0.5 (W6), the

transition of the greatest probability was to its next higher load (W 7) and the transition to

its next lower load (W4. 5) occurred with the second greatest probability. This can be seen

in states W 6, W 7. and W s. However, when the CPU load is low (i.e.. less than 0.5), the

change to a higher load is much faster. For example, with 0.333 probability the CPU load

changed from W, to W4, 5 and 0.424 probability from W4. 5 to W 7.
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Figure 2.1. State-transition diagrams of CPU bound load
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0.244
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Figure 2.2 State-transition diagrams of L/O bound load

Figure 2.2 shows the transitions among various I/O loads. This figure confirms our

previous observation that most often the I/O workload fluctuates back and forth between

two moderate levels, U z and U 5 (0.69 and 0.56) and that there are occasional requests for

burst UO (0.025 from U 2 and 0.012 from U 5 to U3.4).



/

13

2.2. Error Modeling

In this section the collectionand characterizationof errors is discussed. A state=

transitiondiagram to describe differenterror statesis developed. The measured system

incorporates built-inerror detection facilities,and many components also provide for

recovery through retry or redundancy. The error and recovery information islogged intoa

permanent data set calledLOGREC [23]. For each error,whether recoverable or not. the

operatingsystem createsa time-stamped record describingthe error and providing relevant

in-formationon the stateof the machine. In each record there axe a number of bitsdescrib-

ing the type of error, its severity, and the result of hardware and software attempts to

recover from the problem. From this data six different types of errors were collected :

(I) CPU-related errors

(2) Temporary channel errors

(3) Temporary (soft)disk errors

(4) Temporary (hard) disk errors

(5) Permanent disk errors

(6) Software errors

- those that affect the normal operation of the CPU;
the errors may originate in the CPU itself, in the
main memory, or in a channel.

-those that are recovered by channel re,,rv and do ,not

result in the termination of the channel control pro-
gram.

- those I/O errors that are recovered by correc,Ang the
data or by retrying the hardware instruction.

- those I/O errors that are recovered by software

instruction retry or by a functional recovery
routine(s). " "

- those I/O errors that are not correctable and can not
be recovered by retrying the operation, and

- software incidents that are due to invalid supervi-

sor calls, program checks and other software excep-
tion conditions.
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:2.2.1.Error Clus_ering

Due to the manner in which errors are detected and reported in a computer system, it

is possible that a single fault may manifest itself as more than one error, depending on the

activity at the time of the error. The different manifestations may not all be identical [24].

The system recovery usually treats these errors as isolated incidents, In order to address

this problem and to ensure that the analysis is not biased by error records relating to the

same problem, two levels of data reduction were performed.

First, a coalescing algorithm described in [10] was used to analyze the data and merge

observations which occur in rapid succession and relate to the same problem. Next, a tech-

nique described in [24] to automatically group records most likely to have a common cause.

was used (See Appendix A for the details). _ By using these two methods, we classified

errors into five different classes. These classes are called error events since they may con-

tain more than one error and are defined as follows.

CPU :

CH .-_N :

SWE :

DASD :

MULT :

that caused errors to be logged as CPU-related errors

that caused errors to be logged as channel errors

that caused errors to be logged as software errors

that caused errors to be logged as direct access storage device errors

that caused errors affecting more than one type of component

Table 2.2 lists the frequencies of different types of errors. In this table we found that

about 80% of errors are disk and software errors. We also note that about 17_o of the errors

are classified as multiple errors (MU-LT). A MULT error is mostly due to a single cause but

the fault has non-identical manifestations provoked by different types of system activity.

3Although rials second reduction is not essetttial to thit work, it allows u_ to notice several multiple e_ors
which otherwise would r_ot have been noticed.
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Since the manifestations are non-identical, recovery may be complex and hence imposes

considerable overhead on the system. It should be noted that such an error event (17% of

our data) has not been modeled before.

2.3. Recovery Modeling

When an error is detected in the measured system, an appropriate recovery routine is

invoked depending on the severity of the error. The recovery procedures were divided into

four categories in increasing order of recovery cost. The recovery cost was measured in

terms of the system overhead required to handle an error. The lowest level (hardware

recovery), involves the use of an error correction code (ECC) or hardware instruction retry

and has minimal overhead. If hardware recovery is not possible (or unsuccessful), the next

level, i.e., software controlled recovery, is invoked. This could be simple, e.g., :erminating

_he current program or task in control, or complex, e.g., invoking a specially designed

recovery routine(s) to handle the problem. The third level of recovery CALT) involves

transferring the tasks to a functioning processor(s) when one of the processors experiences

Table 2.2. Frequency of errors

Type of error

CPU

CI-L_

MULT

SWE

DASD i

total

Frequency I Percent

2 0.04

119 2.23

924 17.33

1923 36.07

2364 I 44,34
I

5332 I00.00
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un-recoverable error. If no on-line recovery is possible, the system is brought down for

off=line repair. Figure 2.3 shows a flow chart of the recovery process. Table 2.3 lists the

distribution of recovery levels. From Table 2.3 we note that about 73% of errors were

_U. CHA_.D_D successful
HWR

fa Led

successful
ALT

fai

OFFL
successful

Figure 2.3. Flow chart of recovery processes

Table 2.3. Percentage distribution of recovery procedures

Recovery Procedure

HWR

SWR

ALT

OFFL

I Percen%

73.35

26.56

0.02

0.07
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successfully handled through hardware recovery and most of the others were recovered

from by use of t.he software recovery procedure.

2.4. Resottrce-Usage/ErrorlRecovery _Iodel

In this section we combine the separate workload, error and recovery models.

developed so far, into a single model shown in Figure 2.4. A null state W o is added to

.063

/_ / i.( i

/ \I o17
.068 "\ / "

\ /

!0030

)2 .231_ 0

togood
'workload

states

Figure 2.4. State-transition diagram of resouxce-usage/error/recovery model
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represent the state during the non-measured period although it is not shown in Figure 2.4.

The transition probabilities among states are estimated from the measured data using Equa-

tion 2.1.1. Notice that. unlike other models this describes both the normal and erroneous

behavior of the system. The model has three different classes of states: normal operation

states (S,v). error states (S_), and recovery states (S_). Note that the normal state has two

different types of transitions: the first, to other normal states and the second, to error

states.

Under normal conditions, the system makes transitions from one workload state to

another. The occurrence of an error results in a transition to one of the error states. The

system then goes into one or more recovery modes after which, with a high probability, it

returns to one of the "good" workload states. The state-transition diagram of Figure 2.4

shows that nearly 98.3% of the hardware recovery requests and 99.7% of the software

recovery requests are successful. Thus the error detection, fault isolation and on-line

recovery mechanism allow the measured system to handle an error efficiently and

effectively. In only less than I% of the cases is the system not able to recover.

Figure 2.5 shows the state-transition diagram of a MULT error (a MULT event), i.e.,

given that a multiple error has occurred. The model shows that disk and software errors

are strongly correlated in multiple errors. From the diagram, it is seen that in about 65% of

tl_e cases a multiple error starts as a software error (SVv'E) and in 32% of the cases it starts

as a disk error (DASD). Given that a disk error has occurred there is nearly a 30% chance

that a software error will follow. It is also interesting to note that there is a 64% chance

tha_ one software error will be followed by another different software error.
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from good

workload

states

.647

to good
workload

states

.5

Figure 2.5. State-transition diagram for multiple errors (MULT)

2.4.1. Waiting and Holding Time Distributions

We used the state-transition diagram to show the relationship among the workload.

error, and recovery processes in the measured system. We also showed the interactions

among the errors. In this subsection we will present the characteristics of the measured

system in terms of the state waiting and holding times.
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The waiting time for state _ is the time that the process spends in state _ before mak-

ing a transition. The holding time for a transition from state _ to state ] is the time that

the process spends in state _ before making a traz_ition to state ] [25]. Table 2.4 shows the

mean waiting times of both the workload and error states. It is well-known that the mean

and standard deviation of an exponential distribution are the same. Thus an examination of

the mean and standard deviation of the waiting times in Table 2.4 appears to indicate that

not all waiting times are simple exponentials. This is particularly pronounced in Table

2.4(c) which refers to the error states.

Figure 2.6 shows the densities of waiting and holding times for one of the CPU load

states, W s (see Appendix B for all states). Figure 2.6(a) shows the waiting time for W s,

and Figure 2.6(b) and 2.6(¢) represent the holding times from state W s to DASD and SWE

error states, These densities are fitted to i_base-type exponential density functions [26].

I (t) = Z (t).
iw.l

where ai >10, _a i = I, and rL is the number of phases. The g_(t) function can be a simple

exponential, a multi-stage hyperexponential, or a multi-state hypoexponential density

function. The definitions of these three types of exponential functions are listed below.

(1) Exponential: g (t ) = ke -x_ •

(2) Hyperexponential:

t"

--_.lt

g(t) = _oqXie . where k i > O. ai >_O, and _ _i = I.
i--1

(3) Hypoexponentiai:

kj
ai_r_

_=z Xj --X i

/-

F aiX e ,
izt

where k i>O, k_k_ if £_j. and
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Table 2.4 Mean waiting time (inseconds) of states

State

W I

W2

W3

W4

W 5

W6

W7

W_

(a).

# of

obs

53

21
20

130

11

147

268

266

CPU bound workload states

Mean

waiting time

1263.71

289.65

698.79

1203.05

613.74

1380.86

1071.31

1612.72

Standard
deviation

1384.20

1.19

913.30

1130.28

421.73

1583.76

1004.46

2576.35

Std error
of mean_

190.13
0.84

204.22
99.13

127.16
131.04

61.36

157.97

State #obs°f

U 1 45

U z 316

U 3 I2
U 4 18

U s 420
U 6 4

U7 1 86
Us 9

(b). UO workload states

Mean Standard

waiting time deviation

1221.75

1453.19

1437.15
1137.41

I243.63
1696.85

937.45
387.74

1475.70

1530.75

1452.86
616.67

1550.49

1540.19
I127.57

176.96

] Std error
I of mean

1
! 219.98

56.11419.40

145.39
75.66

770.10
121.59

58.99

State

CHAIN

SWE

DASD
MULT

tl #of '

!

201 1
401

77

(c). Error states

Mean Standard Std error

waiting time deviation of mean

5.08
41.35

120.86

293.28

18.31
103.35

223.39

262.84

5.08
7.29

II.13

29.95
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Prob.
0.2

0.0
0 20 40 60 80 I00 120 140

Duration (minutes)

(a) Waiting time density of stateW s (CPU = 0.96)

Prob.
0.2

0.0
0 20 40 60 80 100 120

Duration (minutes)

(b) Holding time density from state W s to state DASD

Prob.
0.2

0.0
0

--
20 40 60 80 100 120

Duration (minutes)

(c)Holding time density from stateW s tostateSWE

Figure 2.6. Waiting and holding time densities



23

Thus the graphs in figure 2..$ were fitted to the following functions (tested by using the

Kolmogorov-Smirnov test [26] at the 0.01 significance level).

(1). waiting time" /(t) = 0.000146e -°-oo_ + 0.000939e-_.ooloat + 0.000033e._O.ooozzo2_

(2). to a DASD error • f (t) = 0.00094e -°'°°_ + O.O008355(e-O.ooogaT, _ e--O.oo6595, )

(3). to a SX,VE error • f (t) = 0.00085e -°'°°st + 0.000701(e-O.OOO716, _ e-O.OO46a_)

.4._. Recovery Distributions

in our data, the selection of the destinations from any state of S_ was found to be

independent of the holding time distribution. Further. for our system the time taken foe

each type of recovery can reasonably be considered constant. The overall recovery time.

i.e..the duration of an error event (or the holding time in an error state), however was not

constant since an error event :nay involve more than one recovery attempt. This time is

computed as the time difference between the first detected error and the last detected error

caused by the same event. The duration of an error event can be used to measure the

effectiveness of recovery from this event and also the severity of error. Figure 2.7 shows

examples of error duration densities for three different types of errors. Again. the follow-

ing phase-type exponential densities were fitted to the graphs shown in Figure 2.7 (tested at

the 0.01 significance level).

(1) DASD • f (:) = 0.0375e "°.m' -o.u+ 0.007e + 0.008635e -'°.°14s69"

+ 0.0001861e -°'°°2137T'

(2) S\VE" f(:). 0.041181e-°.o'_1_ + 0.0002704e-o.oo36o75t
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0.0
0 2 4 6 8 10

Duration (minutes)

(a) DASD error duration density

12 14

0.5
Prob.

0.0
0 4 6 8 I0

Duration (minutes)

(b) SWE errorduration density

12 14

0.I0

Prob.O.05

0.00
0 4 6 8 I0

Duration (minutes)

(c)MULT errorduration density

12 14 16

Figure 2.7.Error duration densities



(3) MLg.T: f (t) = 0.004371 (e-°'°°aalTt - "0.0301092t )
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2.S. Summax_-

In summary, we have developed a state-transition model which describes the normal

and error behavior of the system. Some key characteristics of the model axe"

(13

(2)

(3)

(4)

workload dynamics axe explicitly described.

error/recovery is explicitly described,

waiting times in some workload and in most error states can not be modeled as sim-
ple exponentials, and

the holding times from a given workload state to various error states are dependent
on the destinations.

Thus, the resource-usage/error/recovery process is modeled as a complex irreducible semi-

-_larkov process with the state OFFL as recurrent, making the overall mode.) ergodic.

Furthermore. the process is not an indeFendent semi-Markov process since the waiting and

holding time distributions are distinct for some states.
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CHAPTER 3

MODEL ANALYSIS

Now that we have an overall model, we show the usage of this model to predict key

system characteristics. The mean time between different types of errors is evaluated along

with model characteristics such as the occupancy probabilities of key error and workload

states. Since the normal state transitions are Mso available, we can explicitly examine those

states which are crucial from a error viewpoint. In order to evaluate the model behavior.

the model parameters, however, have to be defined and then the derivations of the measures

can be carried out. Thus in the next section we provide the definitions of the model parame-

ters and the derivations of some important measures.

3.1. Model Parameters

From Chapter 2 we know that the measured system is best modeled as a semi-Markov

process..Assume that M is an n-state semi-M_kov model and given a stochastic transition

P = _,j 1, P,# >10, _=1.2 .... _. j=l.l....n. F p, j=I. and a holding timeprobability matrix
t | ]=t

(t) = [hi.](t)], te (O.co), the mean holding time of the processdensity function matrix H

staying in state _ before making transition to state j. Yij. is
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= f t hia(t)dt . (3.1.1)
t---O

We mentioned that in Section 2.4.1 the waiting time for state i is the time that the process

spends in state i before making a transition. Thus. a waiting time is merely a holding time

that is unconditional on the destination state. Hence the mean waiting time _i is related to

the mean holding time _i./ by

)--1
(3.1.2)

Supl_ose that a process has been operating unobserved a long time and given that the

process is now making a transition, the probability that the transition is to state j. rrj.

must satisfy n simultaneous equations

?l

w'l = _.._it'i,.t •

i---I
(3.z.3)

We note that these rt equations are linearly dependent. This linear delzendency can be easily

shown by summing these n equations, which results in 1 =, 1. Therefore no unique soiution

for rrj can be obtained from just by solving the equations (3.1.3). Since we know that the

probabilities that the transition to all states have to sum to one, i.e..

ZTri

i--i

=I.
(3.1.4)

Then we can use Equation 3.1.3 in conjunction with Equation 3.1.4 to provide an unique

solution for the steady state transition probability..a_fter we substitute Equation 3.1.4 into

the left hand side of Equation 3.1.3, we have
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1 = _r#p)j

iml

+ _ 17"i(1 + p_j). (3.1.5)

The unique solution for _ri can be obtained by solving r_ linearequations of (3.1.5).

matrix form of the solutionis

where _'. O, U and I are:

(I) = .....

(2) O isan unit row vector,i.e.,allelements are one.

(3) U isan unit matrix, axed

The

(3.1.6)

(4) I isan identitymatrix.

.-x_fzerderiving the steady stateprobability(alsocalledlimitingstate probability),the pro-

babilityof a statebeing occupied by the processand the probabilityof the processentering

a specifiedstatecan be obtained accordingly.

The steady state occupancy probabilityof state]. denoted as Cj, is the probability

that the process occupies state ] when the system reaches a stable stage, and is evaluated as

[25t:

where Y = Y__ _i"

i=l

_j =_ij =--.
(3.1.7)

We axe sometimes interested not only in the probability that the process will occupy a

state at some time in the future but also in the probability that the process will enter a
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state at some particular future time. Thus, the probability that the process is just enterino

state j at some time instant after the system is in the steady state, el, is just the state occu=

.

pancy probability Oj divided by its mean waiting time 7) [25]:

ej = eij =_

After substituting the result of Equation 3.1.7 into Equation 3.1.8 we have

(3._.8)

%
ej-

(3.1.9)

In a semi-Markov process -- as in every life -- an important question is "How long

does it take to get from here to there?" Assume that the time it takes to reach state j for

_.he first time if the system is in state i at time zero is e_a, then/,j (t), the probability that

")¢_ .Oi._= :, isdefinedas [,._].

/_j(:)=Pro(8i; =t)

t

= Z ?i.-/hi. (o')/r., (c -o')d o" + ?_,, hl .j (t)
r=J. 0 (3.1:10)

The process can make transitions to other states before it first reaches state j at time t, or it

may stay in state i and then make a direct transition to state j at time t. The first term of

the right hand side of Equation 3.1.10 computes the probability of being in state i for any

o'¢[0, c) and the probability of the process being in another state r at the beginning time of

t--o" after the process is out of state i. The second term computes the probability if the

process makes a transition directly from state i to state j at time t. Therefore. the dine to

move from state i to state j can be estimated as the mean first passage time for a process

from state i to j, and it is evaluated as
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_j ---f tf ij(t )dt
0

(3.1.11)

Since the lid (t) is a recm_ive function which is shown in Equation 3.1.10, the computation

time increases exponentially as t increases. However, in statistical the mean of a random

variable can be estimated as the f_-st moment of its moment generating function, e.g.. the

first derivative of its exponential transformation at point zero. The exponential transfor-

mation of a function g (t), denoted as g" (s) is defi__ed as

g'(s) = f g(c)e-"dt .
0

So. the exponential transformation of fij (t). is

(3.1.12)

0

r&

= Z2,,ffn,,(o.)/rj(t--_),"dcrdt+ p,jfh_j(_)e_'dt
r:_l 0 0 0

t
t

rSl 0 0 0 0

+ p, j fh_ j (c)e" at
0

t&

Zpi_.h_x(s )f_j (s ) + Pi.l h_.l(s )[1 - f_.i(s )]

r=.l

(3.1.13)

Therefore. themean fi-_ passage time for a process from state i to j is



31

d

as f ,a (s )

= Zpi. hi'(s)/'o(s) + h.-(s)_sL.J(s) _---o
r=l

d , • , d .

d

d
• G

Since -_snid(s)[s=o is the first moment of holding time distribution, i.e.. the mean holding

time _ia. and

oo

/_(s) t,_--o= f fio(t)dt = 1 .
0

the mean first passage time _)ij can be derived as below.

Tid = T2i.(Ti.. + T. d) -2i46):
r'=l

By Equation 3.1.2, Equation 3.1.14 can be written as "

(3.1.i4)

rg

Oia = _i + Z.v,.O. a -Pid e-_a •
r=l

(3.1.15)

However, the mean recurrence time O)a is actually the reciprocal of the steady state

entrance rate into state j, i.e.

Thus Equation 3.1.15 can be ,written as

1

e)
(3.1.16)
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and its matrix form is

l_ P_d
ej

n

+ .

e-K+Pe.

where O = [@ij ]and K = (TU)- E -I where T, U and E are"

(1)

(2)

(3)

T is a diagonal matrix in which T i._ = _i. and T ij

U is a unit matrix, i.e., all elements are one, and

E is a diagonal matrix in which E i.i "ei, and E i j

- 0 otherwise.

=0ifi_j.

Therefore, the mean first passage time matrix 0 can be derived as:

(3.1.17)

(3.1.18)

K
0 = -- (3.1.19)

I--P

3.2. Model Behavior

In this section we use the measures that were defined previously to predict the key

system characteristics for given stochastic transition probability matrix and holding time

density function matrix which were estimated from the collected data. By solving the

semi-Markov model we discover that the system makes a transition every 9 minutes and 8

seconds, on average. In comparing this with the mean time between error (MTBE) listed in

Table 3.1. it is clear that most often the transitions are from one workload state to another.

Also note that the model indicates an M'I3E of 4152 hours for CPU errors. This number is

estimated by solving the model equations although there were no observations in the meas-

ured period. (In examining the error data over a one year period we found two CPU
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Ty_peof
error

CPU

CHiN

SWE

DASD

MULT

Table 3.1. Mean time between errors

Frequency IcotLnt

0

13

201

401

77

%

0

1.88

29.05

57.95

11.12

Mean time between

errors (hour)

4152

26.88

1.75

0.87

4.62

errors.) The table also shows that a disk error occurs (as indicated in the model) almost

every 52 minutes while a software error is _letected every I hour and 45 minutes. Most of

the disk errors (95%) are recovered through hardware recovery (i.e., hardware instruction

retry or ECC correction), thus resulting in negligible overhead. This shows that on-!ine

recovery is highly effective and provides a system with the abilitv to tolerate a fault and

recover almost instantaneously. Thus, a highly reliable system is achieved.

Table 3.2 "lists the mean recurrence time for recovery routines. I_, shows that the on-

line hardware recovery routine is invoked once every 0.62 hours, while a software recovery

occurs every 2.57 hours. As mentioned earlier, hardware recovery involves hardware

instruction retry or ECC correction. The maximum number of retries is predetermined. In

the measured a/stem each CPU has a 26-nanosecond machine cycle time and the disk seek

time is about 25 milliseconds. We estimate a worst case hardware recovery cost of 0.5

seconds, i.e., incorporating twenty UO retries: ten through the original UO path and another

ten through an alternative UO path it" the alternative is available. This, of course, overesti-

mates the cos% of hardware retry used for the CPU errors. However. the impac= is very
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Table 3.2. Mean recurrence time

Type of

recovery

Hardware

Software

Alternative

Off-line

Mean recurrence

time (hour)

0.62

2.57

m

651.37

insignificant. This can be seen by comparing the estimated time for each hardware recovery

with the recovery overhead. The comparison shows that the cost of hardware recovery is

worth only 0.02% of total computation time. The mean recurrence time of the alternative

recovery routine, is not estimated due to lack of data. i.e.. this event seldom occurred.

The model characteristics are summarized in Table 3.3. A dashed line in this table

indicates a negligible value (less than 0.00001 probability). Table 3.3(a) shows the normal

system behavior. Given that a transition has occurred the system CPU load is most likely to

reach to W 7 or W 8. i.e. 0.72 or above. This is also reflected in the entry and occupancy pro-

babilities (e and _). From the occupancy probabilities we see that almost 34% of the time

the CPU load is as high as 0.96 (Ws); 39% of the time the CPU is moderately loaded (W 6 +

WT).

Table 3.3(b) shows the erroneous system behavior. The table indicates that about 30%

of the transitions are to an error state (obtained by summing all the _"s for all the error

states). The DASD errors have the highest transition and entry probabilities. Since a transi-

tion occurs every 9 minutes, we estimate that an error is detected, on the average, every 30

minutes. Of course, over 98% of these errors caused negligible overhead.
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Table3.3. Summary of model characteristics

(a).CPU bound workload states

Workload state
i

Measure W o W1 W2 Wa

¢_ 0 0.0625 0.0008 0.0136

77" 0.07,,$7 0.0264 0.0014 0.0104

e 0.00003 0.00003 _ 0.00002

5.78 5.62 102.56 14.32

I"¢4 W 5 W 6 W 7

0.12.58 0.0054 0.1639 0.2255

0-0_¢59 0.0047 0.0635 0.1125

0.0001 0.00001 0.00012 0.00021

2.6.5 31.38 I 2.33 1.32

W s

0J398

0.1127

0.00021

1.32 i

Measure ]i CPU

(b) Error and recovery states

0

-n- 0.00004

e

0 41_¢2

Error stage

CI-L_N

0.00005

0.0055

0.00001

26.88
i

0.0066 0.0333 I 0.01790.0850 0.1692 0.0322

0.00016 0.00032 I 0.000061.75 0._7 4.62

Recovery state

HWR SWR I ALT

0.00022 0.00011

0.2379 0.0572 0.00004

0.00045 0.00011

0.62 2.57 _089.5
J

OFFL

0.00023

J

I

651.57

An interesting characteristic of the multiple error events is also seen in Table 3.3(b).

Although. the transition probability (_r) of a MULT error is lower than that for SWE

(0.0322 vs. 0.0850). its occupancy probability (O) is higher (0.0179 vs. 0.0066). This is due

to the fact that a :VfULT error has a longer sojourn time as compared to SWE error events

(293 seconds vs. 41 seconds from Table 2.4).

3.3. Effect of Workload

In this section we compute the steady state probability of being in a specified work-

load state and making a transition to a specified error state. Table 3.4 shows the
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probabilities of a error occurring at various load levels. In this table. "time" refers to the

mean holding time in the speci_ed workload state (e.g.. CPU - 0.96) before the process

making a transition to the selected state (e.g.. CHA.N). An important relation between error

probability and holding lime in a workload state is seen in U_ls table. The error probabili-

ties appear to be not only a function of resource usage [I0]. but also related to the length of

the holding time in a resource usage state. For example, in Table 3.4(a) the probability of a

Table 3.4. Holding time and transition probabilities to error states

(a). CPU workload

Error state

CPU CHAN SWE

Load Time Prob Time Prob

0.96 668.18 0.0011 1609.71 0.0786

0.72 596.28 0.0032 1118.12 0.0492

0.54 1304.96 0.0010 1507.92 0.0471

l
;l

DASD MULT Total
I

Time Prob Time Prob Prob

1218.62 0.1296 1641.20 0.0285 0.2377

971.62 0.0990 757.09 0.0146 0.1661

1070.10 0.0489 722.26 0.0052 0.1027

Time - in seconds.

(b). UO workload

DASD Cm%N

Load Tim,, Prob

96.20 0 0

67.34 898.35 0.0049

41.59 4522.67 0.0214

Error state

SWE I DASD MULT Total

Time Prob Time Prob Time Prob Prob

256.23 0.0022 434.54 0.0162 578.97 0.0046 0.023

1243.35 0.0987 1170.84 0.1840 928.12 0.0262 0.3138

1516.92 0.0875 1148.18 0.1198 1286.67 0.0234 0.2521

Time - in seconds.
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channel error is almost the same for two diEerent CPU loads. 0.96 and 0.54. The mean

holding time before a channel error occurs at the lower load is larger than that for the

higher load. i.e.1304.96 seconds versus 663.18 seconds. When the holding times are simi-

lar,however, (or increasing with increased usage), the error probabilities do increase with

inc:'easing resource usage. A similar phenomenon also exists for the L/O workload (see

Table 3.4(b)). Thus, not only does a higher workload result in a higher error probability

(for similar holding times), but the error probability also increases with increased holding

time in a particular state. In other words, the error probability appears to be a function of

the absolute amount of resource consumed in a given state, be it through increased work-

load and/'or increased holding times. An explanation for this apparent "wear out"

phenomenon is not clear (since a large majority of our errors are transient), but it certainly

calls into further ques:ion the validity of the frequently used constant error probability

assumption often made in reliability modeling.

3.4..%fodel Validation

In Chapter 2 we had shown that the resource-usage/error/recovery process of the

measured system is best modeled as a semi-_'X4arkov process. This is due-to the fact that the

waiting and holding time distributions of some states are not exponentials. In order to vali-

date this semi-Markov assumption we will compare the occupancy probabi!ities of states

predicted from the model with the values estimated from the collected data.

From Equation 3.1.7 we know that the state occupancy probability of the model. _j.
is defined as •
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However the actual occupancy probability, denoted as _, can be estimated from the col-

lected data by using the following equation.

total time that system observed to be in state i (3.4.1)
_i =

length of the observation period

Table 3.5 liststhe comparison of these two measures. • and _. for the normal stateswith

significant occupancy probability (greater than 0.i probability) and for one key error state

(DASD). From Table 3.5 we see that the predicted probabilities closely, match those

'_.).
estimated from the collected data (with the maximum of 0.025 tolerance, i.e., , This

Table 3.5. Comparison of occupancy probabilities for different states

State W4 W6 W7 i W8 DASD

¢ 0.1258 0.1639 0.2255 0.3398 0.0383

0.1259 0.1634 0.2311 0.3452 0.0386

e 0.0001 0.0005 0.0056 0.0054 0.0003

E 0.0008 0.0031 0.0242 0.0156 0.0078
"i"

¢ : predicsed occup_c7 probability

: actual occupancT pmbabiIity

• : the absoluteerror,] • --



indicates that the semi-Markov model is a

usage/error/recovery process of the measured system.
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good model for the resource-

3.5. Markov Versus Semi-Markov

In this section we investigate the significance of using a semi-Markov model to

describe the overall resource-usage/error�recovery process. It has been argued that since

errors only occur infrequently (i.e.. k is small), a :%Iarkov model may well approximate the

real behavior. Thus, although the collected data shows that the semi-Markov process is a

better model for the resource-usage/error/recovery process, i.e., more closely approximates

the data from the measured system, it is reasonable to ask what deviations may occur if a

Markov process is assumed. In order to answer this question we use a Markov model to

describe the resource-usage�error�recovery process of the measured system and compare the

results with those obtained through the more realistic semi-.'vlarkov model.

Two measures, the unconditional transition probability to the next state (),) and the

.firs:passage time (O), are used as the basis for comparison.

3.5.1. Unconditional transition probability (7)

Given a stochastic transition probability matrix Ipij I and a holding time density

function matrix [hij (t)I" the unconditional transition probability from state _ to state j
J •

denoted as 7ij. in the semi-Markov process is given by [25]:

friPid _id
7id " (3.5.1)
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where I'i j is the mean holding time before a transition occurs from state _ to state j and

is the mean holding time of the process. Because the selection of the next state in the Mar-

kov process is not dependent on the holding time in thd current state, i.e. _ij " _i_ for

every j and k, so from Equation 3.1.2 we can have

/I /I

_'i = _Pia_'_.J = _'ij _Pij = e_J

1=1 J=l

Substitute this into Equation 3.5.1 we have

(3.5.2)

"triPi j _i
111

(3.5.3)

Further, from Equation 3.1.7we have

"Yij = _iPid"
(3.5.4)

Table 3.6 compares the unconditional transition probability for semi-Markov and

Markov models. We see from Table 3.6(a) that when the C'PU load is as high as 0.96, the

transition probabilities to the software and multiple errors are close for both models, This

is also true for channel error when the CPU load is 0.54. This is because for some destina-

tions j the holding time to the next stateisthe same as the waiting time of the current

state, i.e., _ = _ij- For the majority of the cases, however, the Markov and semi-Markov

models are not in agreement. Table 3.7 shows the ratios of the unconditional transition

probability "Yid estimated from both models. Markov versus semi-Maxkov. If the ratio is

less then I then the M_kov process underestimates the transition probability, otherwise, it

overestimates. From this table we see that the Markov assumption sometimes overesti-

mates and sometimes underestimates the transition probability. In particular it overesti-
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Table 3.5. Comparison of transit/on probabilities. _'id
(Markov versus Semi-Markov)

0.72

(a). From CPU workload to error states

Error

o io
o_ ! _o_ Io.oo=_oo___

semi-.'vlarkov ![ 0.0032 0.0492 0.0990 0.0146--------------___..AMarkov I[0.00S8 0.0469 [ 0.1086

semi-Markov I 0 04,S9

0.54 Markov 0.0011 0.0429 _ 0.0627.--...g.._

0.0206

0.0052

0.0099

Load

(b). From I/O workload to erro s:ates

Model CHAN

semi-Markov 0

( Ma.rkov 0

semi-Markov 0.1840

67.34 Markov 0.0068

semi-Markov 0.0214

41-59 I Markov 0.0069

Error

S'WE DASD

]

0.0022 0.0162

0.0082 0.0350

0.0987 0.0263

0.0987 0.1955

0.1198 0.0875

0.0839 0.1516

ML'LT

0.0046

0.0075

0.0049

0.0352

0.0234

0.0264 !
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Table 3.7. Ratio of "/ij (Markov/semi-Markov)

I Worldoad

Resource Load

CPU

DASD

0.96

0.72

0.54

96.20

67.34

41.59

CHAN

2.273

1.818

1.100

o

0.037

0.322

Errox"

$_rE DASD

0.996 1.316

0.953 1.097

0.911 1.282

3.727 2.161

1.0 7.446

0.700 1.733

MULT

0.976

1,411

1.904

1.631

7.184

1,128

mates the transition probabilities to most error states, regardless of the state. Overestima-

tion will lead to an unduly conservative reliability estimate and underestimation to an

overly optimistic estimate. Thus both are undesirable.

3.5.2.First Passage Time (0)

We now examine the difference between the first passage times under the Markov and

the semi Markov assumptions. The first passage time distribution can be used to estimate

the MTBE and its variance.

The mean first passage time from state i to state ], eij in a semioMaxkov process is

given in Section 3.1 as "

i

e_j

1

e.i

nt

r=I

if i - ]

otherwise

(3.5.5)
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From this equation, we notice that the mean first passage time depends on only the mean

holding time and the conditional transition probability of the current state. Clearly, if the

first moment of the first passage time to the error state (e.g., the MTBE) is the only main

concern, the Markov process should be able to provide adequate information. If the distri-

bution (or the higher moments) of the first passage time is of interest, the Markov model

may be inadequate, particularly if the variance of the fi-,-st passage time is large. This can

be seen clearly from the following equation [25].

-ij

I r_ _ 7t

+ Z a)
I"/') i=1 ,.=1 i=l

r _]

tl

r-'V + 7. ,,,,,. 6,..j + )
,.=l

if i = j

otherwise

(3.5.6)

This equation indicates that the second moment of the first passage time is a func*.ion of the

second moment of the state waiting time. as well as the mean holding time to the next state.

Since the mean (.X) and the standard deviation (o') of an exponential distribution are she

same, and :he second moment of an exponential distribution is only a function of its mean,

i.e. E[X a] - 2*E[X] 2. Thus, a Markov assumption may under- or over-estimate the second

moment. E[X2]. if o'_E[X].

Table 3.8 shows the ratio of O'_ij (Markov/semi-Markov) for transitions from a few

selected workload states to the error states. From Table 3.8, we see that the Markov

assumption frequently underestimates the second moment of the first passage time (to the

error state). The underestimation can be as much as 30%. However, it overestimates the

variation of first passage time among different resource usage states, although this is not
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Table 3.8. Ratio of _ (Markov/semi-Markov)

Workload Error

Resource

CPU

DASD

Load

0.96

0.72

0.54

96.20

67.34

41.59

CHAN

0.989

0.996

0.992

1.oo 
1.002

1.001

SWE

0.876

0.998

0.937

1.010

0.963

0.948

DASD

0.694

0.909

0.830

0.901

0.888

0.871

!

MULT

0.939

0.972

0.953

0.991

0.972

0.963

shown in the table.

3.5.3. Summary

In summary, our measurements show that using a Markov model frequently overesti-

mates the unconditional transition probabilities and underestimates the variance of the first

passage times to the error states. The overestimation, of course, will lead to an unduly con-

servative reliability prediction. It can be argued that such gross overestimation (as seen in

some cases here) is undesirable and may not be cost beneficial. The underestimation is no

doubt a serious problem which may lead to unduly optimistic reliability prediction.
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CHAPTER 4

SOFT ARE I -.LIABILITY MODEL

4.1. Introduction

The problem of modeling software reliability during the development, debugging and

validation phases of the software cycle is a well researched area. However, there are few

studies which model software error and recovery processes in a fully operational produc=

tion environment. The difficulties are partly due to the fact that, unlike computer

hardware, which is reasonably modularized, each software Ecstem can have its own pecu-

liar characteristics. At this stage, it is extremely valuable to develop a comprehensive model

quantifying the software error and recovery processes in a production system using real

data. In addition to providing useful information on how and when errors occur in the real

world, this process provides the quantification of the interaction among different types of

software errors; an important result for developing analytical models.

In this chapter, a state-transition model to describe the software error and recovery-

processes in a complex operating system is described. Measurements were made on an MVS

(-Multiple Virtual Storage) system running on an IBM 3081 mainframe. Time-stamped low

level error and recovery, data from MVS, collected during the normal operation of the sys-

tem, formed the basis for developing the model. The semi-Markov model developed from

the .-eal data provides a quantification of the system error characteristics and also gives an
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insight into the interaction between the various software error and recovery processes

occurring during normal system operation.

4.1.1. Rehtted Research

Most software reliability models usually refer to the development, debugging and

testing phases of the software [11.12, 13, 14]. Few of these models have been applied to the

operational phase of the software. In [2] and [15]. software faLlures in an operating

environment are studied. Both studies found that at least 60% of system failures were

software related. There has been little explicit study of hardware/software reliability. In

[15]. software failures related to hardware problems in the operating system are analyzed

and it is shown that errors in the hardware/software interface are often fatal. In [27]. a

resource-usage/reliability model was developed from real data and it was seen that about

36% of detected errors (not necess_ily system failures) were related to software problems.

"_Vith the exception of software reliability growth models, which have been validated

with real data. there are few. £f any. models of software reliability in an operational

environment. Exceptions are the hardware and software model discussed in [18] and a

measurement-based model of workload dependent failures discussed in [10]. However.

these only describe the external behavior of the system and do not provide insight into

component-level behavior.

It is therefore highly instructive to develop a detailed model based on low-level error

data from a production system. In the following sections, we construct a error/recovery

model for the :_/[VS operating system. Software problem_ of differing severity are modeled.

Multiple errors are also considered and and the effect of on-line recovery routines is taken

into accounL
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4.2. Error Characterization

In this section the collection and characterization of the software error and error

recovery data are discussed. A state-transition diagram is developed to describe the

different error and recovery states. This allows us to determine the serverity of errors and

effectiveness of recovery.

Error data based on different causes were collected. Information on software errors is

automatically logged by an operating system module. Details of the logging mechanism are

described in [23]. In order to ensure that the analysis is not biased by error records relating

to the same problem, two levels of data reduction which were described in Chapter 3 were

Ferformed. As a result, the software errors were classified into eight classes. These eight

classes are called error events, since they may contain more than one error, and are defined

as follows.

(1) Control (CTRL)

(2) Deadlocks (DLCK)

(3) I/O and Data -Management (I/O)

(4) Storage Management (SM)

(5) Storage Exceptions (SE)

(6) Programming Exceptions (PE)

- incidentsindicatingthe invaliduse of control state-

ments and invalid supervisor calls

- incidents indicating system or oFerator detected

endless loop, endless wait state or violation of system
or user-deft_ned time limits

- incidentsindicatingproblems occurred during I/O

management or during the creationand processingof
data sets

- incidents indicating errors in the storage
allocation/de-allocation process or in virtual memory
mapping

- incidents indicating addressing of nonexistent or
inaccessible memory locations

- incidents indicating program errors other than
storage exceptions



(7) Others (OTHR)

(8) Multiple Errors (MULT)

48

- incidents indicating that problems occurred which

do not fit the above categories

- incidentsindicatingmore than one type of error

listedabove

Table 4.1 liststhe frequenciesof di_erent types of software error events defined

above. The tableshows that more than one half (52.5%) of software errorswere [/O and

data management errorsand another 11.4% of the errorswere storagemanagement errors.

A significantpercentage (17.4%) of errors were classifiedas multiple errors and are

specificallymodeled in the following sub-section.

4.2.1.Mnltiple Errors

A multiple error most often isdue to a singlefault that has non-ldenticalmanifesta-

tions provoked by differenttypes of system activity. Since the manifestations are not

Table 4.1.Frequency of software errors

Type of Errors

Control

Deadlock

L/O & Data Management

Program Exception

Storage Exception

Storage Management

Others

Multiple Error

Total

Frequency

213

23

1448

65

149

313

66

481

2758

Percent

7.7:1

0.84

52.50

2.43

5.40

11.35

2.32

17.44

100.00
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identical, recovery may be complex. Figure 4.1 shows the state-transition diagram of a

multiple error developed from the data. The transition probability from state i to state j,

p_j, is estimated from the measured data using:

observed number of transitions from state _to state ./
Pij -

observed number of transitions from state

This figure not only illustrates the possible interactions among different software errors but

also provides detailed information on the occurrence of transitions. For example, if a pro-

gram exception e_or (PE) occurs, there is about a 63% chance that a storage exception (SE)

on error will follow. Further, there is more than a 50% chance that one storage error will

be followed by another error of the same type (52% for storage management and also for

storage exception). If we only focus on those transitions with significant probabilities (i.e.,

higher than 0.1), the number of states in Figure 4.1 can be reduced to five. The state-

transition diagram for these active states is illustrated in Figure 4.2. Notice that a cyclic

path is formed by the I/0 and data management (I/0) along with the two different types of

exception states (program exception and storage exception).

4.2.2. Recovery ,'VlodelJ.ng

Recovery in M'VS is designed as a means by which the system can prevent a total loss.

Whenever a program is abnormally interrupted due to the detection of an error, the Super-

visor gets control. If the problem is such that further processing could degrade the system

or destroy data, the Supervisor gives control to the Recovery Termination Manager (RT,%[).

It" a recovery routine is available for the problem program. RT_I gives control to this rou-

tine before deciding to terminate the program.
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0.1124

0.0104

0.2360

0.0786

0.0769

0.0769

0_077

0.4616

0.0684

0.0101

0.1089

0.1924

0.28

0.0243

0.0162

0.011_

0.0179

0.0774

0.1667

0.1164

0.1726

0.1726

0.2161

0.1871
0.1571

0.0898

Figure 4.1. State-transition diagram for a multiple error



51

0.1871 0.2536

"_, xk_ 0.1924 0 _

0.5243/' [ "'" "_ 0_1089_ "_/:"_ _ -- 0.1726

o_._ / ....[" j o:_._:-h

/ t 1"-'°'_) °''''_

\i

o.:1_1 _ 1/ O.lS71
0._-5T92

Figure 4.2. Reduced state-transition diagram of multiple errors

The purpose of a recovery routine is to free the resources kept by the failing program

(if any), to locate the error, and to request either a continuation of the termination process

or a retry. Recover,/routines are generally provided to cover critical MVS functions. It is
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however, the responsibilityof the installation(or of the user) to write a recovery routine

for other programs.

More than one recovery routine can be specifiedfor the same program: if the latest

recovery routine asks for a termination of the program, the RT_I can give control to

another recovery (ifprovided). This processiscalled"percolation."The percolationprocess

ends ifeithera routineissuesa validretry requestor no more routinesare available.In the

lattercase, the program and its related subtmsks are terminated. If a valid retry is

requested, a retry routine restoresa valid status using the information supplied by the

recovery routine(s)and givescontrol to the program_ In order for a retry to be valid,the

system should verify that there is no risk of error-recurrence and that the retry address is

properly specified. An error may have four possible effects.

I) Ret:y

2) Task Termination

3) Job Termination

4) System Damage

- The system successfully recovered and returned control to the

problem program.

- The program and its related subtasks are terminated, but the sys-

tem is not affected.

- The job in control at the time of the error is aborted.

- The job or task in control at the time of the error was critical for

system continuation. Thus. job/task termination resulted in system

failure.

Figure 4.3 illustrates the steps in the recovery process. It is clear that recovery can be as

simple as a retry or more complex, requiring several percolations before a retry. The prob-

lem can also be such that no retry or percolation is possible. Table 4.2 shows the percentage

for these different types of situations. For example, for storage management errors, approx-

Lmately 8% of the cases resulted in a direct retry, 84% involved some percolation and over
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successful __

error / Job '"

detected :_ colation/ retry _ _ term )

ret

( _'o Per- I / T_k

' )

Figure 4.3. Flow of recovery
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Table 4.2. Percentages of recovery attempts.for a software error

Type of error

Control

Deadlock

I/O & Data Management

Program Exception

Storage Exception

Storage Management

Others
i

Retry Percolation No-Percolation

(%) (%) (%)

78.38

2.78

93.49

20.09

28.09

7.77

14.89

21.62

97.22

6.51

79.91

71.91

83.73

85.11

0.0

0.0

0.0

0.0

0.0

8.50

0.0

8% could not be percolated any further (i.e. jobs/task termination). The table" shows that

only in a small Fercentageof the cases was the problem un-recoverable(no-percolation).

4.3. Software Reliability Model

4.3.1. Overall Error/Recovery Model

In this section we combine the separate error and recovery models to construct a single

overall model shown in Figure 4.4. Note that a state. Normal. represents the normal sys-

tem operation. The results of the recovery process are classified into three different states

(resume op. task term and job term) to reflect the severity of errors. The model thus pro-

vides a complete overview of software error and recovery from an error occurrence to its

recovery.
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0.077:'

Normal

/

\

\

0.0243

0.0540

0.174_

SE

6289

0.8313

Figure 4.4. Sol:ware error/recovery model
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4.3°2. Waitiaxg Time Distributions

Table 4.3 shows the characteristics of both normal and error states in terms of their

waiting times. Note that the duration of a single error is generally in the range of 20-40

seconds on the average, except for deadlock and "others". The table also shows that the

errors not classified are relatively insignificant since their duration is less than 2 seconds.

Program exceptions rake twice as long as control errors (42 seconds versus 21 seconds).

This is possibly due to the extensive software involvement in recovering from program

exceptions. Figure 4.5 shows the density of waiting time in the normal operation state, i.e.,

tee density of the time to error. This density could not be fitted to a simple exponential,

and because of the shape of this density we found that it was fitted to a multi-stage gamma

Table 4.3. Mean waiting time (in seconds) of states

State

Normal

Control

Deadlock

UO & Data Management

Program Exception

Storage Exception

Storage Management

Others

i Multiple Error

# of

obs

2757

213

23

1448

65

149

313

66

481
I

Mean

waiting time

10461.33

21.92

4.72

25.05

42.23

36.82

33.40

1.86

175.59

Standard

de_'iation

32735.04,

84.21

22.61

77.62

92.98

79.59

95.01

12.98

252.79

Std Error

of mean

623.44

5.77

4.72

2.04

11.53

6.52

5.37

1.60

11.53
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Figure 4.5. Time to error density

density function better than to a phase-type exponentials at the same acceptable level. The

multi-stagegamma density function f (t) isdefinedas

tl

f(t)= Z aig(t:eq.s i).

i=t

where a i >10, 7a i=l. and r_ Ls the number of stages.

i=1

function (with s the distance shifting from the origin),

(4.3.1)

The g(t'a, s) is a gamma density

g(:" a. s) =
0 t <s

--1 (c-s)_-_e_'-'> : >1s .
(4.3.2)

where F(a) is a gamma function. Hence. the density in Figure 5 so obtained has five stages.

given by



f (x) = 0.748 g(x; 2.1, --1) + 0.055 g(x: 0.5. O) + 0.069 g(x; 3.5, 3)

+ 0.030 g(x" 5.0, 8) + 0.098 g(x: 5.0, 17) o

tested using the KoLmogorov-Smirnov test [26] at the 0.01 significance level.
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4.3.3. Recovery Time Distribution

For the purposes of evaluating the time for recovery, we assumed that each recovery

mode takes a constant amount of time. The overall recovery time, i.e., the duration of an

error event (or the waiting time in an error state), however was not constant, since an error

event can involve more than one recovery attempt or may require more than one recovery

routine. The recovery time was then computed as the time difference between the first and

the last detected error caused by the same event. The duration of an error event was used

to measure the effectiveness of recovery from this event and also the severity of the error.

Figure 4.6 shows the recovery time densities for three different types of errors: I/O

and data management, storage management, and multiple errors. Note that none of these

densities could be fitted by simple exponentials at an acceptable level of significance. Thus.

they were fitted to phase-type exponential density functions [26].

I%

where ai>_O. _ai=l and n

i=1

/(t) = Z
i=l.

is the number of phases. The gi function can be a simple

exponential, a multi-stage hyperexponential, or a muti-stage hypoexponential density func-

tion. These exponentials are defined in Section 2.4. The densities in Figure 4.6 were fitted

functions (tested using the Kohnogorov-Smirnov test at the 0.01to the following

significance level):
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Figure 4.6. Recovery time (error duration) densit:es
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(I) L/O:

(2) SM:

(3) MULT:

):(t) = 0.07825e -°'°s59e+ 0.000354e -°'°°3958_,

/(t ) = 0.1642e-°'5'+ 0.030424e -°'°5n9_ + 0.0006634e -°'°°658e

/(t) = 0.078e-°'4:+ 0.002426e -°'°°5s66.+ 0.002163e -°'°°5525_.

•and

6O

43.4. Summary

In summary, the model developed explicitly quantifies the error and recovery process

in the measured software. We note both the time to error and the recovery time distribu-

tions in several key states cannot be modeled as simple exponentials. Hence the overall pro-

cess is modeled as a semi-.Markov process. Further. the semi-Markov process is irreducible

with the resume operation <resume op_ state, the job termination (job term> state, and the

task termination _task term> state being recurrent.

In the next sub=section we analyze the overall model to determine key software error

characteristics. The mean time between di_erent types of errors is evaluated along with

:model characteristics such as the occupancy probabilky of key er:=or states.

4.4. Model Analysis

4.4.1. Genera/Characteristics

By solving the semi=Markov model, we discover that the measured software system

made a transition, on the average, every 43 minutes and 22 seconds, Table 4.4 lists the

mean time between different software errors (i.e,, mean time between errors) and Table 4.5

shows the mean recurrence time for recovery processes. By examining the mean recurrence

time for I/O and _IULT errors from Table 4.4 and comparing them with the mean waiting

times in Table 4.3, we find that although the I/O errors occur about 3 times as often as the
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Table4.4. Mean time between errors

Error ! Frequencystate count

CTRL

DLCK

I/O

PE

SE

SM

OTHR

MULT

213

23

1448

65

149

313

66

481

Percent MT'BE

(%) (hour)

7.72

0.84

52.50

2.43

5.40

11.35

2.32

17.44
i

37.83

351.58

5.56

120.15

54.08

25.73

125.34

16.75
L

Table 4.5. Mean recurrence time of recovery

Type of recovery MTBR (hour)

Retry

Percolation

No-Percolation

4.25

8.55

241.43

multiple errors, the system sizends nearly 6 times longer in recovering from a multiple

error (25 seconds for I/O errors versus 175.6 seconds for multiple errors). This is because

recovery from a multiple error involves several different types of recovery attempts. In

addition, 63% of the multiple errors invoke percolation compared with she fact that 94% of

the I/O errors recovered through retry (see Figure 4.4).
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4.4.2. Model Probabilities

Given the irreducible semi-Markov model of Figure 4.4. the following steady state

probabilities were evaluated. The derivations of these measures are given in Section 3.1.

(1) transition probability (_))

(2) occupancy probability (Oj)

(3) entry probability (ej)

(4) mean recurrence time (Gi)

- given that the process is now making a transition,

the probability that the transition is to state j

= at any instant time the probability that the process

occupies state j

- at any instant given that the process is entering a

state, the probability that the process enters state j

- mean recurrence time of state j

The model characteristics axe summarized in Table 4.6. A dashed line in this table

Table 4.6. Characteristics of software error/recovery model

: _ Normal __

L,Measure state CTRL J_=D_LCK _ I/0

"tr 0.2474 0.0191 0.1299

(I) 0.99S0 - 0.00125

(a)

Error state

PE SE

0.0060 0.0134

0.000098 0.000189

t $M I OTHR I MULT

o.o2sl  o.o431
0.00036 - 0.002913

(b)

Recovery state Result

Measure I Percolation No-Percolation Task term Job term

17"

0

Retry

0.1704

4.25

0.0845

8.55

0.0030

241.43

Resume op

0.1414

5.11

0.0712

10.16

0.0348

20.74

" - in hour
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indicates a negligible value (less than 0.00001 probability), From the occupancy probabil-

ity.(_, of the normal state in Table 4.6(a). we see that in about 99.5% of time the software

system is operating n_rmally, i.e., only 0.5% of time the system detects software errors.

This indicates that the reliability of the measured software system can be as high as 0.995.

In Section 2.2 we know that about 35% of observed errors were software errors. Thus the

effect on the overall system reliability due to the software errors is very significant.

The table also shows that. of all possible transitions made. 24.73% are to an error state

(obtained by summing ali the _r's for all the error states) and another 25.79% are to a

recovery state. Since it was seen earlier that a transition occurs every 43 minutes, we esti-

mate that a software error is detected, on the average, every 3 hours. From Table 4.6(b),

we notice that although an error is detected almost every 3 hours, a successful recovery

(i.e.. results in resume operation), only occurs once every five hours, i.e.. nearly 43% of the

errors result in task/job termination.

Multiple-errc, r events formed a signi_cant category on their o_'n. Since this trite of

event involves several errors and result in considerable overhead, it is anal',zed seFarate! Y

in the next section.

4.4.3. Characteristics of A Multiple Error

In Section 4.2 we pointed out that about 17% of software errors were multiple errors.

We also noticed that the multiple errors mostly consist of I/O. storage, or program errors.

A strong connection between program and storage exception was seen in the occurrence of a

multiple e_or. Table 4.7 lists the characteristics for a multiple error and was obtained by

solving the semi-.Markov model described in Figure 4.1 with a zero holding time in the

normal state (i.e.. given a multiple error occurs). From Table 4.7 we see (from ,-r,
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Table 4.7. Characteristics of a multiple error

Normal Error state

Measure state CTRL DLCK I/O PE SE SM OTHR

17

e

ms

8

0.1767

0

0.00568

0.0489

0.0327 0.0048 0.1451 0.1473 0.2957 0.1360 0.0617

0.0648 0.0130 0.3004 0.0837 0.2202 0.2717 0.0462

0.00105 0.00015 0.00466 0.00473 0.00950 0.00437 0.00198

0.2647 1.8126 0.0596 0.0587 0.0292 0.0636 0.1401

' - in hour

transition probability) that nearly 30% of the transitions are made to the storage exception

state when the process enters a multiple error mode. Once in a multiple error mode, a

storage exception error occurs every 1 minute and 45 seconds (_ = 0.0292 hours in Table

4.7). while the average duration of multiple errors is about 2 minutes and 56 seconds (_ =

0.0489 hours, the recurrence time of the normal state). Note that the average duration of a

multiple error predicted here from the model is very close to the mean duration of a multi-

ple error, 175.5 seconds obtained from real data, listed in Table 4.3. This provides a strong

evidence that the semi=Markov process is a good model four our measured system due to its

fairly accurate prediction. As soon as an entry into a multiple error is made, consecutive

errors are detected almost every 31 seconds (by taking the rec.iprocal of the sum of all

entry probabilities e in Table 4,7). This indicates that about 5 to 6 errors will be detected

on average, once a multiple error occurs,

There are several interesting characteristics of multiple errors which can be derived

from the model of Figure 4.1. For example, if we want to know the probability of a

storage exception error given an l]O error, we can evaluate it by the multi-step transition
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probability to the SE state from the L/O state. This turns out to be very small, only

0.0076. However, we find that the probability of an UO occurring given a SE occurs at any

time instant, is as high as 0.668. This is partly due to the fact that for a semi-Markov pro-

cess the unconditional transition probability at any time instant. 71_, is not only a function

of conditional transition probability pij but also a function of mean holding time. This can

be seen in Equation 2.5.1.

4.5. Conclusion

In this study, we have developed a semi-Markov model to describe the error and

recovery processes in the MVS system. The model isbased on real error data collected dur-

ing normal system operation. The semi-.EIarkov model developed provides a quantihcation

of system error characteristics and the interaction between di_Terent types of errors. As an

example, we provide a detailed model and analysis of multiple errors, which constitute

approximately 17% of all soft'ware errors and result in considerable overhead. [t is sug-

gested that other systems be similarly analyzed and modeled so that a wide range of realis-

tic models of software reliabilityin an operatin_ environment are available.
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PERFORMABILITY MODEL

A workload/reliability model is built based on real data. Given a stochastic transition

probability matrix and a holding time density matrix, the system behavior such as the

unconditional transition probability and state occupancy probability in the steady state can

be estimated. However, the performability of the measured system is not yet addressed.

Thus in this chapter we use the resource-usage/error/recovery model to estimate the per-

formability of the system. R_ward functions are used to depict the performance degrada-

tion due to errors and also due to di_erent types of recovery procedures. Toward this end,

we define a reward rate for each state of the resource-usage/error/recovery model.

5.1. Reward Function

First, we propose the reward rate r i (per unit time) for each state _ in our model as

follow:

Y'i ----"

Ji

si + ei
if_ ¢S_ UsE

o if_ _Su.

(5.i.i)

where, the si and e i are the service rate and the error rate in state i, respectively. Thus one
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unit of reward is given for each unit of time when the process stays in the normal states

S,v. The penalty paid depends on the number of errors generated by an error event. WiLh

an increasing number of errors the penalty per unit time increases, and accordingly, the

reward rate decreases. Zero reward is assigned to recovery states. This is due to the fact

that during the recovery process the system does not contribute any useful work toward

the system performance besides recovering from an error. Based on this proposal, reward

rates for the error states are estimated and shown in Table .5.1. We know that from Table

3.3(b) the transition probability to the DASD error is about as much as twice to the S'_VE

error and Table 5.1 shows that the reward gained from the DASD state is also as much as

twice from the SVv'E state. Thus we expect that the impact due to the DASD error on the

performability is much higher than that due to the SW'E error.. In order to understand the

effectiveness of various errors, first we show some important performability measures that

can be derived from the model.

Since the system can be in anv state at any instant, so the reward rate of the s',stem at

time t, X(t ), is the reward rate of the state where the system is currently occupied. It is a

random variable and denoted as

Table 5.1. Reward rates, r i , for error states

St.a_e DASD ! SWE [ CHAN I MULT
I



X(t ) = / r_ Iprocess is in state i at time ¢

Therefore the expected reward rate at time t. E[X(t)], can be evaluated as

68

(5.1.2)

E[X(t)] = Z P_(t)r_
i

where p_ (t) is the probability of the process being in state i at time t.

reward by time t. Y(t). can be derived from

(5.1.3)

The cumulative

t

Y(t ) = fX(o')d o".

0

Therefore. the expected cumulative reward at ti_ae t. E[Y(t )]. is given by [28]:

(5.1.4)

f
t t

E[Y(t )1 = E [fx(cr)d ¢r = Zr, fp, (o')d o" (5.1.5)
!

'0 i 0

In order to solve for Pi (t) and hence other measures, we convert the semi-Markov process

into a Markov chain using the method of stages [26.29]. The conversion of the semi-

Markov model to the Maxkov model for the measured system is described in section 5.2.

Thus the state probability vector P(t ) = ( .... Pi (t) .... ) can be computed by solving the set of

differential equations of the form:

d
P(t ) = P(t)Q

dt

where Q is transition rate matrix of the Markov chain [25].
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5.2. Semi-Markov to Markov Conversion

,ks we know. the sojourn time distribution of states is the only difference between

semi-Markov and Markov modeM. For a Markov model the sojourn time distributions of

states must be exponentials, however, it can be any distribution for a semi-Markov model.

Thus. to convert a semi-Markov to a Markov process, one must change the non-exponentml

distributions to exponentials. In this section, we show how to convert a state with non-

exponential distribution to a number of states in which each state is exponential.

In Section 2.4 we fitted the state holding times of our resource-usage/error/recovery

process to the phase-type exponentials. The phase-type exponential function f (t) can _e

expressed as

f (t) = )2 (:),
i=1

/l

wherea i>O. )'ai

i--I

simple exponential, a multi-stage hyperexponential, or a multi-stage hypoexponentiai.

definitions of these three types of functions are listed below.

= 1. andn is the numeer of phases. For each phase'_.thegi(g) can bea

The

Exponential • EX,.P (,'x)

EX.P(X) = ke -_

Hyperexponential " Hyper (kl.k 2 ..... k.)

r 7-

-.kit

Hvper(X,.X 2 ..... a_) = _aiEXP(X i) = _a, aie

i--1 i--1

where a i 2> O, a i t> O. and Y' a i = 1.

i=1
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Hypoexponential " Hypo (),1.k2 ..... k r)

r r

Hypo()uA2 ....At) - _aiEXP(X_) = _aiXie

i=l i=1

r kj
where k i >0. I ickj if _ _], and a i = I'_

i=I Xj --X i

By using the method of stages [26], a hyperexponential distribution can be modeled as a set

of parallel exponential stages and a hypoexponential distribution as a set of series exponen-

tial stages. Figure 5.1(a) and 5.1(b) show the conversions of these two types. In Figure

5.1(a) we note that each a i of hyperexponential function is converted to the probability to

the associated state having density E,v_P(),i), however this is not the case for the hypoex-

ponential. From Figure 5.1(b). we know that the Markov version of the hypoexponential is

just a series connection of states in which each state has an simple exponential density func-

Zion and the probability from one state to another is one. As an example we know in sec-

tion 2.3 that the holding time density from state W s to error state DASD is fitted by

f (t) = 0.235 EXP(O.004) + 0.765 Hypo(0.00093.0.006595),

which is a combination of hyper and hypo exponentials. The .Markov conversion of the

sr.ate with Equation 5.2.1 holding time density is shown in Figure 5.2. Note that the state

W a in Figure S.2(a) is modeled as a three state Markov process. This is shown in the dotted

area of Figure 5.2(b).

5.3. Performability Analysis

.Afterconverting a semi-Markov process to a Markov process,analysis can be carried

out on the resultingMarkov reward model of the measured system using SHARPE (the
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f

(a). Hyperexponentialdistribution asa set of parallelexponentialstages

(b). Hypoexponential distribution as a set of series exponential stag__s

Figure 5.1. The conversion of non-exponential to a set of exponentials
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0.5455

(a). Semi-Markov

1-

W 8

EXP(0•004)
I

I

t

I

I

I

J

EXP(0.00093) EXP(0.006595)

t

(b). Markov

0.5455

Figure 5.2. The Markov conversion of State W s

Symbolic Hierarchical Automated Reliability and Performance Evaluator) [29]• St-La,RPE is

a modeling tool developed at Duke University. It provides several model types ranging

from reliability block diagrams to complex semi Markov models, and allows the user to

construct and analyze performance, reliability and availability models. However. this tool

can only be used to analyze a model with size less then 200 states, thus we assume our
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resource-usage�error�recovery model is a independent semi-Markov process. The conver-

sion of the waiting times of states are shown in Appendix C.

In order to study the impact of different types of errors, the irreducible semi-Markov

process is converted to one with absorbing states in the following manner:

a) with OFFL as the absorbing state (OFFL),

b) with MULT and OFFL as the absorbing states (MULT).

c) with SWE, MULT and OFFL as the absorbing states (SWE),

d) with DASD, MULT and OFFL as the absorbing states (DASD), and

e) with DASD. SWE. MULT and OFFL as the absorbing states (ALL).

In case (a) we assess system performability in which alI but off-line failures are not

recovered from. This ac:ually provides us with the result of the system reliabilit'/. In case

(b) we discontinue recovering from multiple errors. Here. we expect to measure the imFact

on :he reward to a muItip!e error. Since multiple errors haFpen much more frequenti',"

than OFFL and the sojourn time is much longer comparing with others, we expect to meas-

ure the impact of SWE and DASD on the reward to a MULT error. Thus. in case (c) we not

only stop recovering from multiple and off-line failures but we a!so stop the recovery from

software errors. In case (d) we recover from SW'E errors but stop recovery from DASD

errors. Finally, in case (e) we do not recover from any errors besides CH.AN.

We compare these scenarios first using the expected instantaneous reward rate E[X(t )]

which is defined by Equation 5.1.3, then using the time-averaged expected accumulated

E[Y(_ )]
reward In all but case (a) and (e) we consider two variations: when a state such

t

as DASD (ML'LT or SWE) is made absorbing, we can either let the reward rate in such a

state be non-zero or we can set its reward rate to zero. The impact of the non-zero assign-
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ment is that upon reaching the absorbing state, the system continues to operate in a

degraded mode. In the latter case. i.e., zero reward assignment, we conservatively assume

that the system stops functioning when it reaches the absorbing state(si.

In Figure 5.3(a). we plot E[X(t)] for cases (a) and (b). In the case (b) we use two

different assumptions for the reward rate for the MULT state, rrvrum.=0.27777 and

rr_uzz,=O. We also plot E[X(t)] for case (a) with the assumption that all states have

exponentially distributed holding times. We note that such a Markovian assumption leads

to an overestimation of the system's capability to perform useful work. and the degree of

overestimation increases as the system operating time increases. We also note that not

recovering from multiple errors considerably degrades the system's performability. ,More=

over, changing from non-zero to zero reward rate further reduces the system's effectiveness

E[X(t )]
In Figure 5.3(b), we plot the for cases c. d and e. In each case, except case e,

t

we also have two versions with reward rates for absorbing states being non-zero and zero.

respective!y. Note that not recovering from SWH errors degrades system effectiveness con-

siderably compared with the effect of not recovering from DASD errors, provided we

assume that absorbing states continues to provide service in a degraded mode. On the other

hand. if we assume that absorbing states are system failure states, i.e., zero reward rates for

absorbing states, then not recovering from DASD failures is more severe than not recover=

Lug from SW_ failures. This behavior is explained by the fact that the reward rate in the

DASD state is about twice that in the SWE state (0.5708 versus 0.2736 in Table 5.1). Fig=

ures 5.4(a) and 5.4(b) are the counterparts of Figures 5.3(a) and S.3(b) where the measure

E[Y(t )]
plotted is rather than E[X(t )]. The trends are similar.

t

drastically.



75

E[X(t)]

1.0
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0.0
0

° °
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(a)

E[x(t)]

1.0

0.5

0.0
0 5 10 15 20 25

Minutes

.. o)

i I !

30 35

(b)

(r.r. : reward rate)

Figure 5.3. The expected re,,vaxd ra-,e. E[X(t )]
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I , _r.r. = O) , , ,

1.0

E[Y(O]/t

0.5

o.ol
0 5 10 15 20 25 30 35

" 24 hours

(a)

1.0

E[Y(t)]/t
0.5

0.0

DASD,Ir.r.. > 0) SWE (nr > 0)

SWE (_.r. = O)
f

_/- -

I _ • , _ I , , , , l .... I .... I I I I i I I m _ i I

5 10 15 20 25 30 35
Minutes

(b)

(r.r. : reward rate)

Figure 5.4. The time-averaged accumulated reward. E[Y(t )]/t
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Finally, in Figure 5.5, we show the distribution function of Y(oo). the accumulated

reward until system failure, for two cases: Markov versus semi-Markov. Both assume that

the OFFL state is the only absorbing state. Once again we note that the Markovian assump-

tion _mplies an overestimation of the system's performability.

1.0

Prob.

0.5

0.0
0

.Markov

2 4 6 8
Reward (unit: 252"10000)

Figure 5.5. Distribution of accumulated reward until system failure
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SUMM.4 Y AND CONCLUSIONS

6.I. Summary of Results

This thesis has developed a methodology to construct a resource-

usage/reliability/performability model for a complex system based on real data. The model

obtained is capable of retlec_ing both the normal and error behavior of the system. Both

hardware and software reliability and their interactions are modeled. The effect of

recovery through the built-in recovery mechanisms is also considered. By modeling the

recovery process we are able to evaluate the severity of errors in general and the cost of

specific error type in particular. Low-level error and resource-usage data to develop the

model was collected on an IBM 3081 machine running the _IVS operating system. The

results of this research suggest that other production systems should be similarly analyzed

so that a body of realistic data on computer error (including failure) and recovery models

isavailable.

Chapter 2 described the development of the model, using the lo_v level data on

resource usage and errors. A statisticalclustering method (k-means clustering)was

employed to characterize the resource usages into a few workload clusters. A two-level

error data reduction (error coalescing and grouping) scheme was used to identify individual

error incidents. Results showed that about 17% of errors are multiple errors (believed to be

multiple manifestations of the same problem). The state-transition diagram for a multiple
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error was obtained to study the interaction between system components (hardware and

software). For example, it was seen that software and disk errors were strongly correlated.

From the measurement data it was seen that the holding times in key operationa} and

error states were not simple exponentials. A semi-Markov process was used to model the

system behavior. This (semi-.Markov) assumption was also validated by comparing the

state occupancy probabilities predicted by the model with the actual state occupancy proba-

bilities estimated from observed data. The results show that the proposed model provided a

fairly accurate prediction of the real behavior.

The analysis of model behavior was performed in Chapter 3. The analysis showed

that on-line recovery is highly effective and provides the system with the ability to tolerate

many faults and recover almost instantaneously. An analysis to extract the effect of the

workload on the error probability showed that not only does a higher workload result in a

higher error probabiiity (for similar holding time), but the error probability also increases

with increased holding time in a particular workload state. In other words, the error pro-

babiiity appears to be a function of the absolute amount of resource consumed, be it

through increased workload and/or increased holding times. An explanation for this "wear

out" phenomenon is not clear since a large majority of the collected errors are transient, but

it certainly calls into question the validity of the frequently used constant error probabil-

ity assumption used in reliability modeling.

The signiS.cance of the use of a semi-Markov model, as opposed to the simple Markov

model, to describe the overall resource=usage�error�recovery process was also investigated.

The results showed that a staple Markov model frequently overestimates the uncondi-

tional transition probabilities and underestimates the variance of the first passage times to

the error states. The overestimation can lead to an unduly conservative reliability predic-
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tion and the underestimation may lead to unduly optimistic reliability prediction. Both

over- and under- estimations are not desirable.

In Chapter 4, the software error data was used to build a software reliability model to

describe the error and recovery processes in the MVS operating system. The semi-Markov

model developed provided a quantification of the operating system error characteristics and

also the interaction between diJ_erent types of OS errors. We estimate that in only 0.5% of

the cases the measured software system is unable to recover. A detailed model and analysis

of multiple software errors. (which constitute approximately 17% of all software errors)

was provided, showing how a single software problem can have multiple manifestations.

To investigate the validity of this model, the duration of a multiple error predicted from

the model was compared with the value estimated from the observed data. The agreement

between two results was found to be within 1%.

A measurement-based performability model was discussed in Chapter 5. A reward

function, based on the service rate and the error rate in each state, was proposed. In order

to investigate the impact due to difl_erent errors, the expected reward rate, as well as the

cumulative reward, at time C were estimated. The results show that the software error

_SWF) degrades the system performance more severely than the disk error (DASD)

although the error probability of DASD errors is about twice as much as that of SWE

errors (0.169 versus 0.085). This may be due to the cost for DASD errors, which IS less

than that for SWE errors, i.e., the reward rate in DASD state IS higher than that in SWE

state. If. however, both error types result in system failure then, as expected, the DASD

error degrades the system performance more severely than the SWE error.

The system performability under a Markov assumption IS also estimated and com-

pared with that estimated from the more realistic semi-Markov model. It was found that
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the Markov assumption overestimates the system performability and that the degree of

overestimation increased with increased system operation time. Once again, this indicates

that the traditional Markov process is not good enough to model a computer system and to

provide accurate predictions.

6.2. Suggestions for Future R_earch

The results of this study suggest that other systems be similarly studied so that a

wide body of realistic results on computer system hardware and software performability

are available. This is useful both. from the point of view of validating existing analytical

models and from the point of view of generating realistic models of system behavior.

A possible extension is the area of adaptive model construction. The workload and

error clustering methods employed here have potential for use in an adaptive algorithm

which is capable of real-time model construction. The use of such models for adaptive tun-

ing for optimum performability under various conditions needs to be investigated. To be

successful such a system would require learning capabilities so as :o use valid Fast informa-

tion together with some knowledge of the environment for both reconKguration under

failure and for system tuning.

In this thesis we have used past data on errors and workload for model construction.

It would be interesting to investigate the possibility of doing the same on the basis of data

generated from error/failure injection on a prototype or into a simulation model of a sys-

tem. Such a procedure has the potential of providing realistic feedback to system designers

early in the development stage. A comparison of the results from such a model with those

obtained through analytical models would be instructive as ";,'ell.
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(I). Error Clustering

Identical errors occurring within 5 minutes of each other were coalesced into a single

event. This was done to ensure that the analysis is not biased by failure records relating to

the same problem. The clustering algorithm analyzes the data and merges observations

which occur in rapid succession and relate to the same problem. For each failure point, the

following test was performed "

IF <error type> ==<type of previous error> :L\'D

<time away from previous error> _< 5 minutes

THEN"

<fold error into cluster being built>

ELSE

< start a new cluster>

The result is a set of clustered errors. Associated with each cluster is information consist-

ing of error classifications, number of points in the cluster, time of first and last errors in

the cluster, and a variety of status data provided by the hardware and operating system.

(II). Error Grouping

A visual examination of the error clusters showed the existence of sets of clusters

occurring within a short time interval. The close time proximity among some clusters

means a substantial increase in the system error rate during that period. The high error
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rate introducesthe suspicionthat the errorsoccurringduring the higherror rate periodmay

berelated, i.e., different errors may be due to a single cause, to multiple but related causes,

or to multiple and independent causes. Therefore, the high error rate periods are formed by

grouping all error clusters occurring within a small time interval of each other. This inter-

val was chosen to be 5 minutes. The result is a set of grouped errors. The primary

difference between a cluster and a group is that clusters contain only occurrences of the

same error (same error type and machine state), whereas groups contain occurrence of

different errors (different error type or machines state).
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APPENDLX B

The Characteristics of the Resource-Usage/Error/Recovery Model

(I). Stochastic transition probability matrix.

(Due to the size of the matrix, it is broken into two parts, (a) and (b).)

W o

W1

W2

W3

W4

W s

W 6

W7

Ws

CPU

L--'HA.N"

SW'E

DASD

MIILT

I-IWR

SW'R

ALT

OFFL

W o W 1 W 2 W 3 W 4 W 5 W 6 W., W s

0 0.351 0.055 0.108 0.135 0 0.216 0.027 0.I08

0.019 0 0 0.057 0.170 0 0.113 0.132 0.019

0 0 0 1 0 0 0 0 0

0.143 0.048 0 0 0.143 0.048 0.04S 0.048 0

0.023 0.045 0 0 0 0.015 0.046 0.099 0.038

0.091 0 0 0 0 0 0.091 0 0.091

0.034 0.034 0 0.013 0.054 0 0 0.087 0.067

0.040 0.011 0 0 0.022 0 0.051 0 0.069

0.093 0 0 0 0.007 0 0.015 0.063 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 .0 0 0 0 0 0 0 0

0.018 0.036 0 0.014 0.013 0.013 0.144 0.314 0.329

0.006 0.046 0 0.008 0.160 0.007 0.183 0.286 0.306

0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0

(a)
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W o

W1

W2

Wa

W4

W5

W 6

Wr

W s

CPU

CH_"_

SV_'E

DASD

M-L'LT

H'Vv'R

S%'R

A.LT

OFFL

CPU C]_LA_N SWE DASD IV/IYLT I4"WR SWR ALT OFFL

0 0 0 0 0 0 0 0 0

0 0.019 0.151 0.226 0.094 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0.143 0.381 0 0 0 0 0

0 0.015 0.227 0.386 0.106 0 0 0 0

0 0 0.091 0.545 0.091 0 0 0 0

0 0.007 0.262 0.383 0.060 0 0 0 0

0 0.026 0.208 0.482 0.091 0 0 0 0

0 0.007 0.231 0.502 0.082 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0.5 0.5 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0.643 0.355 0 0

0 0 0 0 0 0 0.017 0 0

0 0 0 0 0 0 0 0 0.003

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

(b)

(u). Waiting and holding time densities. Constant sojourn times are assigned in W o. W 2,

CPU, CHAN and recovery states. The others are shown below.
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Waitkug/holdiug time densities for W 4

Prob.

0.4

0.2

0.0
0

_f(t) = 0.000975 e -°'°°3t

-'0.0274404: )

+ 0.0007516 (e-0.00107t --e

/
i L t | L l L , _-_ L , I I - • ] .... | .... I . i i i _ i i

20 40 60 80 100 120
Nation

Holding time density to DASD

Prob.

0.4
--0.002:

f (t) = 0.00072S e

0.002085 (e -0.00103Or "0.0047974,

0.2 .........................................

'\

i
0.0 ' _ ' I,

0 20 40 60 SO 100 120
Duration

Holding time density to SWE

Prob,

0.5

0.0
0

-_}.Olt

f (t) = 0.0034 e

+0.00121 (e ''0'00148'_ --e-"0'0077807: )

\
\
\

:L''!':.'_d/'I---A_ -, I,,_,IL_:I .... q._*! .... I,,

20 40 60 80 100 120
Duration

Holding time density to MULT



/

9O

Waiting/holding time densities for W 4
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Waiting/holding time densities for W 6

Prob.
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Waiting/holding time densities for W 7
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Waiting/holding time densities for W s
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Waizing zime densities for Error Stazes
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Semi-Markov to Markov Conversion

The state conversions of the resource-usage�error�recovery process from a semi-

Markov model to Markov model is demonstrated in this appendix. Here. we assume that

the model is an independent semi-Markov process because of the limitation of SHARPE.

The CPU bound workload state is used to estimate the system's Ferformability. State

W_ is combined with W 3 because W 2 has very few observations. CHAN error state is also

ignored because it has very few observations. The semi-Markov to Markov conversion of

the workload states are shown from Figure (a) through (g) and the conversion of three

error states are shown from Figure (h) through (j). After the conversion, the overall model

is expanded from 15 states to 34 states.
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f

_a,(o.ol)

o__._.

(a). W 1 state

f

f

zxP(o.oos)

.15 _

(b). W_ state



97

ExP(o.oo3)

EXP(O.001039) EXP(O.0047974)

(c). _V4 state

EXP(O.O04)

EXP(O.002193) EXP(O.O059258)

(d). T,Vs state

EXP_O.O06)

0.205_

EXP(O.O004539)

(e). W 6 state
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_0.004)

KXP(O.O00998) EXP(O.O144421)

(f). W 7 state

f

EX_O.O02)

0.1571_7

(g). W s state
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EXP(OAS)

0.2
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EXP(0.0021377 )

(h). DASD state
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o.9.,5o/ 

EXP(0.0036075)

(i). SWE state

:)
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EXP(O.03817)

(j). MULT state
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AA3STRACT

System level concurrent detection of errors due to

hardware faul+.s can be accomplished by mtroducing
software redundancy m the form of executable assertions

into a program to momtor the correct operation of the
system during its execution. This paper attempts to

formalize the use of executable assertions for the purpose
of concurrent error detection, and discusses a

transformation approach to the design of assertion
s_atements.

The second part of the paper deals with the

effectiveness of the error detection technique. A fault
simulatmn method for the evaluation of the reliability of
the asserUon statements ks described. This scheme was

used to study the effectivenems of a nontrivial program m

providing protection against faults in the underlying
system. The experimental results shows that the use of

executable assertions provides an effective approach to
achieve concurrent error deled:ion.

k'e_'ords: Concurrent error detection, executable

assertion, transformation, fault simulalaon, program
design.

1. L-N-TRODUCTION

Off-line circuit tes*.ing is one of the widely used
techniques to detect physical failures and to ensure that a

system ks defect-free [i]. UrJortunately, shrmkmg device
dimensions, lower energy levels for mdicatmg logical
values and b_igher speed operation have increased the
possibility of transient errors in computing systems that

are based on VLSI technology [2]. Since these errors are

usually nonrecurring and not reproducible, off-Ime testing
(useful for permanent faults) will not reliably detect
'.ransients. The current trend ks to mclude Concurrent

Error Defection (CED) capaaility in the design of digital

systems in order to detect errors concurrently during
normai operauon.

Traditionally, systems with CED are implemented
using self--checK/rig circuits [3] and/or hardware

duplication [41. A seLf-checking circuit is a logic circuit

designed to process information encoded m error-detec:ing
codes. Through the use of proper aeslgn techniques, the

circuitcan _e designed so that most faults will produce
errors +.hat are detectable by observmg the circuit's
encoded output. Duplication c:rcuits can be considered as

Acknowledgment: T"_m r_earch was supported in
part :v a c_ntract from IEM Corporation -and m part by
the ._at_onal AeronauU_ and Space Administration

(NASA) under contract NASA NAG 1-61 3.

a so,octal case of setZ-checking circuits that employ the

duplication code. Since these techniques usually require a
large degree of hardware redundancy, they are very
expensive.

Recently, a new approach that utilizes a combination

of hardware and software redundancy to accomplish

concurrent error detection has been proposed [5, 6]. These

techniques assume that malfunctions such as processor
failures and bus faults will cause errors in the control

flow of the program. These techniques partition the

assembly language level instructions of the application
program into blocks without branch instructions. At

compile time, cyclic cones or signatures are generated for

the instruction stream of each blc(:k. Durmg the
execution, the same cyclic encoded signatures are

regenerated by a linear feedback shift register. Error
detection is performed by comparing the run-time

generated signatures with the ones precomputed by t-"e
compiler. A similar techmque that employs oniy software
redundancy is discussed in [7]. T'h.ks technique part/Uon.s
the program into loop--free intervals and a database
contaming the path in.formatlon in each of the Iooo--free

intervals is derived from _e detealed design. Redundant
code is inserted m the program so that Lhe path actually
traversed at run time can be recorectea and then checked

against the information provided m the database. Any
discrepancy mdicat_ an error. These tecanioues are

inexpensive and provide excellent control 2ow monitoring
capability. However, +.,hey do not perform well m cases of
errors due to data type faults [8].

This paper discusses another software approach to
achieve system level CED. This techmque '_nserts software
redundancy m Lhe form of executable assertio._.s into the

program to check the correct operation of the system

during its execution. Since the asserL, ons are desig_ied to
morutor the mtended behavior of the program, control
sequence errors or errors due to faults in ",he data values

will change the intended semantics of the program and
•&erefore will be detected by the asser_on statements at
run Ume.

An assert!on-checking statement is a statement of -he
form:

if not ASSERTION H_en ERROR;

where ASSERTION is a Boolean. exoresston that s_ec_es
ccndltioms about the program, variables tiuat the current

state of the computation has "-o sausfy, and ERROR ks the
action _aken if the ASSERTION ks FAL.SE (i.e., the

conditions are not satisfied). Since the sub,oct of this paper

is error detec_.lon (rather than correction)[ and we slmpiy
consider ERROR as an output s+,atement that sends an

error message, tn order to acmeve fauit tolerance, ERROR
can be a cad '.o some error re:_very rou:me. -I'ms,

,



however, is beyond the scope of this discussion; for such a
discussion the reader is referred to [9] and [10].

The use of executable assertions for CED has been

discussed in [II, 12, 13], and found to be very helpful.
However, assertions when used carelessly may provide

only a poor coverage of errors. In thispaper, we attempt
to formalize the use of assertions for the purpose of CED.

A structured technique for the design of self-checking
programs is presented In [14],in which the assertions are

derived from the functional specifications of the program
by performing stepwtse refinement. The process of
stepwise refinement, however, relies on intuition and Is

therefore very much ad-hoc. In Section 2, we will present
a transformation approach to the design of programs with

assertion statements; an example will also be given to
illustrate the application of this technique. In Section 3

the technique is extended to handle procedure and
function calls.

Section 4 is concerned wlth the effectivenessof run-

time assertionsIn providing protection against.faultsin the
underlying system, (i.e.,against hardware and transient

faults). Although executable assertions were originally

pro.rinsed for the detection of errors caused by software
faults, it has long been suspected that they can also detect
errors caused by faults in the hardware. We conducted

experiments to investigate this issue of assertion
statements. In this section, we will describe the

experiments and discuss the experimental results. They
show that use of the executable assertions provides an
effective approach to achieve CED.

2. DESIGN ISSUES

In this paper we use a program design language similar

to that described in [15] to discuss the assertion design
technique. The syntax description for the language is
informally given in the following:

< statement list > ::- < statement > +

<statement > ::- < assignment> J < alternative> i < iterative>
) <call>

<assignment> :,- <var> -- <English statement>
<alternative> ::= if <Boolean expression>

:hen <statement list>

else <statement list> fi;
< iterative > ::= whi_¢ < Boolean ezpresaion > do

<statement list>
enddo:

Here, <call> is a procedure or function call whose syntax
:s the same as subroutine calls in Pascal. "(...)+" denotes

"one or more instances of the enclosed." An example design

written In this program design language is given in _,e
following. The program computes the inverse of a matrtx
M and returns the reverted matrix in MI.

2rocedure MATRIXLNV(n: itUeger: ("dimension of M "_
M: array [1..lO.t..lO] o/real: (" matrix to invert ")

vat MI: array [I..I0.I..i0]o/real); (" inverted matrix ")
vat

i: integer: (" loop index *)
B.X: _rray ft..t0]o/r__:i:

1 :--I:

while, _ n do

2 B--:-th column of the identity matrix, l[i-th column]:
3 Ml[:-thcolumn]--zompute X'such that _LX = B;
4 i--!ncremen_i:

enddo

end: (* MATRLX/NV ')

The properties of being intuitive and being rigorous

often seem in conflict. A program design language that is
too rigorous is usually leo tedious to use, and it is error-

prone. Program design languages, such as the one

informally described in this paper, offer several
advantages.

(I) The design is written in terms of the concepts and

functions of the discipline from which the problem is

taken. It IS therefore very readable and easy to
comprehend.

(2) The use of "pidgin" English statements allows the ideas
to be expressed at whatever level of detail is

appropriate to avoid ambiguity.
(3) Although EngLish-like statements are used, formalism

is imposed on the control constructs so that the

correctness of the design can be formally verified
using tradltional verification techniques [16].

(4) The use of the structured controls makes the
translation of the design into code in structured

programming languages (e.g., Pascal, PLfI) a
straightforward process.

In the following, we will use the term "program

design" to denote the design of the program written in the

program design language, and use the term "program code"
to designate the final product written in the target
programming language.

In the following, we assume that the design of a

program has been successfully written in the program

design language. We will present a constructive technique
that transforms the design into a new design with
embedded assertion statements. The following definitions
are needed for the discussion.

Definition I: Let SL be a statement l/st in a oro_ram design.
ASSF_RT(SL) denotes the assertion statements (knowledge)
of what must be true after " ' "the execuuon of the SL.

Definition 2: Let A I and A o be assertion statements.
A I.A o denotes the new assertion statement that expresses
the cffmbined knowledge of what must be true derivable

from A I and A 2.

Note that since the alternation of the order of the

program statements may not preserve the semantics of the
program, the operation o is not commutative. For instance,
suppose we have the following assertions:

A I -- (X=a)

A 2 =--(X=X "-2)

A 3 (Y-X-_2)

where X_ denotes the previous value of the variable X.
We then Qnave

AI*A2°A3 _-- (X-a+2 A Y-a+-_)

A l oA 3.A ,. = (X-Y-a+2)

An assertion statement should have the form "if not
ASSERTION then ERROR." However, we will use the
ASSERTION to denote the asserUon statement whenever it

is clear from the surrounding context.

De'_n_ion 3: Let SL be a statement list in a program design.
.4SJFF.RTE._SL) denotes the transformed version of the SL

- the new SL with associated assertions inserted, (e.g.,
ASSERTED(SL) - (SL ASSERT(SL))).

In order to be able to transform a program design into
a design with embedded assertion statements, we need a

set or" rules that transforms the control constructs into

versions with the associated assertions. In the fotlowmg
we wdl use ,-he symbols p to denote a Boolean expression.
k to denote an expression, SLi to denote statement list i



and%'todenoteconstanti. A setof heuristicrulesbased
onfunctionexpressionsdiscu.__edin[17]ksgivenbelow:
_,Ruleof Decomposition:

ASSERTED(SL1SL2)=(ASSFRTED(SL1)ASSERTED(SL2))
(2)Ruleof Comp_ition (Sequential):

ASSERTED(SL1 SL2)

- (SL1 SL2 ASSERT(SL1) o ASSERT(SL2))
(3) Rule of Alternation:

ASSERTED(if p then SL1 else SL2 ]i:)
- (if p then ASSERT(p) ASSERTED(SL1)

else ASSERT(-p) ASSERTED(SL2) fi;)
(-l) Rule of Iteration:

ASSERTED(whige p do SL enddo;)

- (while p do ASSERT(p) ASSERTED(SL) erutdo;
ASSERT(-_p))

Assertions, designed using these rules, check whether
the run-time computation computes the intended

semantics defined by the program design. We note that

assertions for a complete check can be expensive for some
programs, and we may have to use tess rigorous assertions
that check on the acceptability of the computed results
rather than guarantee their complete correctness. In the

following we give an example to illustrate the application

of :he transformation rules to design both a complete
check and a more cost-effective check for a program design.

F_'npLe I: We wi[i transform the procedure
MATRIXINV given earlier into a design with assertion

statements. In th.ks example we will refer to the
statements by their statement numbers as given Ca the

program design. ALso i° denotes the previous value of the
variable i.

ASSERTED(NLATR L'CINV )

- ASSERTED(I while i <_ n do 2 3 a enddo:)

Apply :he Rule of Decomposition, the program can be
divided into two segmencs:

ASSERTED(MATRJXLNV)

= (ASSERTED(l) ASSERTED(wh./ge i _< n do 2 3 4 enddo:) )

(1)

Tke transformed, version of statement 1 is

ASSERTED(l) = ( I .ASSERT(:) )

- ( I if i ;_ 1 then ERROR; ) (2)

Applying the Rule of Iteration, we have

ASSERTED(wk.ffe i <_ n do 2 3,1 enddo:)

= ( while i <_ n do ASSERT(i _< n) ASSERTED(2 3 -1) enddo:

ASSERT(i > n) ) (3)

Applying the Rule of Composition, we have

ASSERTED(2 3 a)

= (234 ASSERT(2) • ASSERT(3) • ASSERT(a))
= (234 (B = ![i-th colum.ni) • (M " .MI[i-th column] = B)

• (i - i-l))
(: 3 4 pa- st:[,:-t_ colu=< - ,[i-t_ _olum_]_ • (i -i _-:))
(:

3 4 (M Ml[i-th column] - I[i-th column]) A (i - t°o*l))
(4)

Substitute (-t) into (3), and we have

ASSERTED(wh_le i <_ n do 234 e_.ddo:)
- (wh/& : _ ndo

'::i>n then ERROR

i_ -- i; (* save previous value *)
23a

if (M ' MI[i-r.h column] = I{i-th column]) :hen ERROR:

_/:i a= io-! ) tr, en ERROR:

q ",: _ n', :hen ERROR: ) (5)

Substitute (2) and (5) into (1), and we have

ASS ERTE D( NLATR LX.LNV)
=(i_ 1:

if i _: 1 _hen ERROR:
while i _ n do

if i>n t,hen ERROR

i ,- i: (" save previous value*)
Ig,- I[i-th column]:

MI[i-th column] .- compute X such that MX - B:
i *'- increment i:

if (M • Mi[i-th column] ;_ I[i-th column]) then ERROR:

if(i _t io+l ) then ERROR:
erMdo
if (i _ n) then ERROR; )

The assertions in (5) guarantee that after the ex_uUon
of the WHILE_DO construct, we must have

-_i _< n. M • ._Ll[i-_ column] - l[i-th column]

However, the assertion ASSERT(I) ensures that i was

initmlized to "I" before entering the loop. We therefore
have

-_i 1 _< i _< n. M • 3,1I[i-th column] - I[i-th column]

In other words, the assertions ensure that the computed
result satisfies the condition M - MI - I. or errors would

have been detected. These azser:ions provide a "complete
check" for the program. To improve :he run-time

overhead, one may want to use the following le._ rigorous
assertion for statement 3

ASSERT(3) - (M[i-th row] • MI[i-th column] - B[i])

We then have

ASSERT(2) • ASSERT(3) * ASSER'F(4)

-(M[i row].MI[i_column].[1DA(i.i 0+ 1)

and the hnal design becomes

ASSERTED(MATRLXLNV)
-(i--l;

if i _ 1 then ERROR;
whih. i _ ado

if i > n then ERROR
i '- i: (* save previous value ")
_,-- :[i-u_ comm_]:
MI[i-th column] *- compute X such that ._LX - B:
i -- increment i;

if (M[i row] • MI[i-th column] _ [1]) therL ER.ROR:

if (i ;_ io-l) then ERROR:
er_do

if (i _< n) then ERROR: )

We see that this approach can reduce the run-time

overv.ead by about n fnum_r of rows m the matrix M)

times compared to the design with a complete check.
Although its assertions do not perform a complete check,
every eiemeat of the output matrix MI is revolved m the

checking process. These assertions can therefore provide
powerful error detection at a much less cost. Another

form of less rigorou-¢ checks using aata encoding schemes
discussed m [18]. in which a program is designed to proce.ss
information encoded m some error detecting code and error

detectlon m performed by ooservmg the encoded output.

The transformation process described tn Example 1
may seem to involve many steps. Actually, many of Lhem
were shown for the purhose of tiiustration. :n practice,

the obvious ste_ could have been skipped, and the process
woula have appeared much shorter.

The transformation rules described earker can aiso be

applied to programs at the ".a_e: programming language

,



level. ComFuter programs, however, are extremely low=
level, They seldom involve concepts related to the

problem the program is trying to solve, but instead deal
with strictly computer-oriented operations such as

addition, subtraction, etc. Deriving assertions from the

program code therefore can be tedious and error-prone, In
contrast, program designs are written in terms of the

concepts and functions of the discipline from which the
problem ts taken. Such a program would be little more
than a restatement of the mathematical or other

formulation of the problem, and derivation of assertions

based on the program design would be correspondingly
general and would not depend on the implementation

details. Since this approach would employ the concepts
and notations of the problem discipline, fundamental
results from the problem discipline can also "re used in

designing the assertions. The preceding example

demonstrates that deriving assertions from the program
design is much simpler than deriving them from the

program code. In the example, we dea/t with only four
design statements. In Pascal or Fortran for instance, we

would have to deal with about a hundred of lines of code.

Another advantage of deriving assertions from the

program design instead of the program code lles in the
detection of errors due to coding faults and erroneous

designs in the lower levels of the program. During the
deveiopment of software, executable assertions can

provide an extemsive testing capability to locate software

errors [9]. If the assertions are derived from the program
design, it can be used to check whether the program code
correctIy implements the program design.

3. PLh\'DLLNG PROCEDURE CA_LLS

A design may involve procedure and function calls. In
order to show the generality of the transformation

technique, it is emended to handle procedure and function
calls. There are two approaches to these statements:

(. l ) We can con.sider a procedure or a function as a separate
program and apply the transformation rules to
transform it into a design with assertion statements.
Assertions can also be inserted to check the correct

passing of the arguments. For instance, we can pass to
the called procedure a check variable which is the sum

of the actual parameters. In the called procedure, we
add assertions to verify that the check variable ks

indeed the checksum of the formal parameters. This
scheme can protect against hardware and transient

faults that affect the argument stack during the
procedure calls.

(2) Viewing a procedure call as an instance of the called

procedure, we can consider the called procedure as if it
is part of the calling procedure. The transformation

then can be carried out normally after the following
"modification" - the following steps merely describes a
mental process; non of the assignment statements
should actually be added, or any call statements be

removed from the orlginalprogram:

(a) At the beginning of the called procedure, we add

assignment statements to assign the values of the

actual parameters to the corresponding formal
parameters.

(b) At the end of the called procedure, we add

assignment statements to as.s:gn the values of

those formal parameters *,hat are "called by
reference" to the corresponding actual parameters.

(c) Replace the proceV.ure call statement by the new

body of the called procedure.

For function calls, the rules are similar. They are
given in the following:

(a) At the beginning of the called function, we add

assignment statements to assign the values of the

actual parameters to the corresponding formal
parameters.

(b) Add before the statement that involves the

function call, the new body of the cal/ed function.

(c) Replace the function call by the function name,
(i.e., the function name is used as a variable).

Example 2: This example illustrates these two. approaches.
The procedure MATR/XLNV shown In Example 1 can be

rewmten to include a call to procedure SOLVE that
computes the solution of a Linear system MX - B. The
solution is returned m the matrix X.

procedure MATRIXLNV(n: integer: (* dimension of M *)
M: array [1..10,1..10] o/real; (* matrix to invert *)

vat ,_fl: array [1..10.1..10] o/real); (* inverted matrix *)
v_g"

i: integer; (" loop index ")
B.X: array [i..10] o/real;

b_g_n
i'-l:
_Le i _ n do

B,-i-th column of the identity matrix, l[i-thcolumn];
ca/l SOLVE(M.X.B):
MI[i-th column].-- X:

i--increment i:
en.ddo

end; ("MATRLXhNV ")

If the first approach is used, then the transformed
version of MATRLXEWV isas follows:

procedure MATRLXLNV(n: integer; (" dimension of M *)
),I: array [1..10,1..10] o/real; (= matrix to invert ")

vat MI: array [1..10,1..10] o/real); (" inverted matrix ")
y_

i: integer: (*loop index ")
B,X; array [1..10] o/real;

b_ gin
i--1;

if (i _ l) then ERROR;
",chile i _ n do

if i>n then ERROR:
i_ -- i: (* save previous value *)

[_'--i-_h column of the identity matrix. I[i-th column]:
ca//SOLVE(M.X.B):
,Ml[i-th column],-- X;
i--incrementi:

if (_U[i-tb column] _ X) then ERROR:

if (i _ io+l ) then ERROR:
enddo

if (i _ n) then ERROR;
ev.d: (* MATRLXLNV *)

Note that +..he correct operation of the procedure SOLVE ks

assumed by the calling procedure. M-ATRLX:LN_ assumes
"hat the solution returned in X has been checked to be

correct by SOLVE, and it only checks to make sure that X
isassigned to the appropriate column of the matrix M.I. In

other words, _t assumes the responsibility of the procedure
SOLVE :o include assertions to assure that X sat/sties the
eondit/on M.X - B. If the second approach were u.sea, the

assertion statements for M.ATRIXINV would have been
the same as :hose shown in Example i, Consider "he
procedure SOLV_E as having only one statement:

X -- compute X such that NLX - ]3;



it is thenobviouswhy thesecondapproachwouldhave
yieldedthesameassertionstatementsasthosederivedm
Example 1.

4. EXPERE_LENTAL STUDY

4.1. Methodology

To study the effectiveness of assertion statements, we

must be able to insert hardware faults into the system to

see their effects on the execution of the programs.
Simu!ating faults in hardware, however, is very expensive.
A less expensive approach that simulates hardware
failures in software is described in [18]. The central idea

of this technique is to introduce simulated faults by

applying mutation transformations [18] to produce
mutant programs. These mutants are then executed to

measure the abil/ty of the set of assertions to distinguish
the program from its mutants. This technique employs an
error-based testing strategy. It requires the defimtion of
the classes of faults that are considered. The set of faults

that constitutes the fault model must correctly
characterize possible physical failures in the hardware
system. Our fault model is based on the earlier functional
fault model for complex processors [19]. We extended the

existing fault model to include faults in the memory
system. The fault model is given in the following:

(A) Addressing faults: Faulty decoding circuits can
cause the following faults:

• no storage location _s selected

• a wrong storage location is selected
• more than one storage location is selected.

(B) Instruction decoding faults: Failures m

instruction decoding cnn cause the following faults:
• no instruct!on is executed

• a wrong instruction is executed
• more than one mstrucUon is executed.

(C) Faults in storage elements: Some of the bits in the
storage elemen',s are stuck-at-0 or stuck-at-l.

Transient fatiur_ can also change the contents of

registers or memory locations arbitrarily.

Since a hardware fault can affect many statements in
the assembly code, the insertion of a simulated hardware

fault into t_he system can _ very tedious. For instance, a

stuck-at fault in a register will affect all the assembly

instructions that invoive the faulty register. To produce
:he mutant program, one must add additional Instructions

throughout the assemb'_y code to set (stuck-at i) or reset
(stuck-at G) the stuck-at bit properly. The assembly code

ts usually very long and this task is therefore very tedious
and error-prone. In order to be able to insert hardware

fauI_s quickly and rehably, we implemented a sregram
that can perform this task automatically. Basically, for
ea:h test c_e we specify a mutant operator; in response,
:,he fault insertion program asks for relevan_ information.
and then performs the mutation transformation

automatically by scanmng the assembly code and
modifying the affected a_trucuons accordingly.

Another class of faults ",hat must be considered

transient faults. Trans:ent faults are due "o temporary
environmental condiUons. They can occur even m the
absence of all physical c.efec_. To insert these faults, we
_ed _.he debugger A,DB [20] available on t,_e VAX. ADB

a general put.rinse debugging program. It orovices
capa_':;.iUes to examine ales and a controi environment for

the execuuon of L,'NLN programs. We ran _e assembly

co.de of the program under the control of ADB, and

transient faults were injected by setting break points and
modifying the ob,ect files.

.1.2. Experiments

The experimental results reported in [18] show that

the use of run-time assertions yielded a substantial

improvement in system reLiabiLity, The programs selected
for the experiments, however, were small. We are aLso

interested in assessing the rellabillty and the cost

effectiveness of this form of CED when it is used in larger

programs, In this section we describe another experiment
based on a nontrlvlal program, namely the Redundant
Strapped Down Inertial Measurement Unlt (RSDIMU).

This experiment will help us understand better the
effectiven.ess of the CED technique when it us used in real
applications,

The RSDIMU is part of a navigation system m aircraft
and spacecraft [21]. We selected the RSDIMU for this

study for two reasons. First, it is the kind of application

that would require very high system rellabflity. Secondly,
the problem has been used In a study of N=version
programming that was carried out by the Research

Triangle Institute for the National Aeronautics and Space
Administration. We were able to use a version of the
program for our project.

The program is wmtten in P_cal. We added

executable assertions to the original program to provide the
CED capabiLity. Both the transformation approach

described in this paper and the data encoding technique
discussed in [18] were used to design the assertion
statements. The software redundancy due to the assertion
statements is about 14%. and the run-time overhead is
9.8%.

In this study, we assume that assertions that

distinguish mutant programs differing from a correct one
by only simple erro_ are so sensitive that they also

implicitly detect more complex errors. In other words,

complex errors are coupled to simple errors. The coupling
effect has also been nsea in mutation testing m software
[22, 23, 24]. Based on thin assumption, we included only

single faults in our experiments. All three types of faults
described in the faul_ model were considered in our study.
We tried 539 cases of hardware faults and about 6C_

of transient faults. Ever_t register, most memory locations
used for data storage, and essentially every type of VAX

instruction used by the program were subjected to inserted
faults during some phase of the experiment. The

experimental results are summarized in Table I that gives

the types of faults and the resulting errors detected during
the experiments.

We found that essentlally all errors that affected the
data manipulation were detected. Undetected errors were

due to permanent hardware faults that caused inflmte
execution. A fault may cause an umntended iooo to

execute indefinitely [25], and ff there is no assert,ton m the

!oop then the errors will not be detected. Inexpensive

t_me-out mecnamsms [26] can be uzed to handle tb-s
problem.

There were a few cases where the errors were detected

by the operating system, for example, errors w_aca caused

+,he program to try to read pass end of file. floating
excepUo,-_s, when bad data was found on real read.
memory faults,illegal instructions, bus error, etc., before
zhe program haa a chance to chec'._ its ou::uz. These were

counted as aetected in the experiments. In particu,.ar,
_permanent s-a-I faults, especially u".ose at ze more



significantbits,tendto causefloatingexception.Errors
dueto thisclassof faultsaregenerallydetectedby the
operatingsystem.

If"a transientorsoftwarefault affectsonlytheinput
operations,it effectivelychangestheinputdata,andthe
assertionstatementscannotrecognizevalid(satisfiesthe
inputspecifications)but faul{y (unintended)data,unless
theywereoriginallystoredinsomeencodedformat.Nor

can the technique detect errors caused by faults that affect

the output only after the correctness of the output has
been verified by the assertions. These classes of faults are

beyond the scope of the CED technique and are not
included in our study. In fact, many faults that occur

during the I/O operations are likely to cause memory
faults, bus error, etc., and will be detected by most
operating systems. We also did not consider those faults
(mostly transient, less than 5% of the test cases) that have

no effect on the outcomes of the computations because the
proposed technique is intended for error detection. For

instance, a faulty decoding circuit may cause a wrong
register to be selected every time some intended register is
used. If the wrong register is not designed to be used

anywhere in the program segment, then the wrong register
can replace the intended one without causing any error in
the computation of the program segment.

Although it is not our primary concern, it is
interesting to note that the CF.D technique located two

software bugs committed by the programmers in the
original program. These software faults were overlooked

by the acceptance test (used to test the system to the

requirements) done by the Research Triangle Institute.
The program was run on 1,0(30 sets of test data, and the
two bugs were not discovered.

6. CONCLUSIONS

This paper has presented a programming technique

that utilizes software redundancy to accomplish
concurrent error detection. We have formalized the use of

executable assertions for the purpose of concurrent error
detection, and presented a transformation approach to the
design of assertion statements.

The second part of the paper dealt with the reliability
of the concurrent error detection technique. A fault
simulation method has been developed for the evaluation
of the reliability of assertion statements. This scheme was

used In our experiments to study the effectiveness of a
nontrivial program. The experiments showed that errors
due to most inserted faults were detectable.

The CED technique described In this paper depends for

its reliability improvement on the assumption that errors
occurring during the execution of the assertion statements

will not mask out the errors in the normal computation.
Thls is a reasonable assumption. An assertion statement
usually has the following form:

if expressionl _ expression2 then ERROR

It is unlikely that errors occurred during the execution of

expressionl and/or expression2, yet their results are

accidentally equal (except for faults in the comparator).
Our experimental results seem to support the validity of
thisassumption.

A disadvantage of using executable assertions for

concurrent error detection is the extra time required to

execute the assertion statements. A technique that uses a
watchdog processor to execute the assertion statements

concurrently with the main process in the main processor
is discussed in [13]. This approach can improve the
performance of such programs. Another disadvantage is

the extra burden imposed on the software developer in
designing the assertion statements. However it seems

Likely that the advantages of requiring checks, which are

realized not only at run-time but also during the
construction of the program, far outweigh any
disadvantages [9].

We must point out that the technique discussed in this

paper is meant to complement rather than replace other
forms of concurrent error detection. Thks technique has its
limitations. It cannot detect errors that occur after the
validation has been done. For instance, once the results

have been verified, errors In the output process are not
detectable. A stuck-at fault m the status bit may cause an

assertion to be TRUE at all tlme, and thus effectively
disables the error detection capability of the assertion

statement. Lower level error detection schemes such as

Table i. ExFerimental Results

Hardware

Transient

Type of Faults

Faults in Storage Element

Instruction Decoding Faults

Addressing F._uits

Errors

Detected

by CED

90 (5&.,8%)

22 (25.oo%)

127 (a3.64%)

Errors

Detected

by O. S.

i09 (51.17%)
i

66 (41.25%)

64 (72.73%)

161 (55.33%)

Undetected

Errors

4 (o.17%)

2 (2.27%)

3 (1.03%)

Control Faults 45 (a2.S6%) 60 (57.!4%) 0 (0%)

instruction Decoding Faults 136 (62.67%) S1 ,37.33%) 0 (0%)

Addressing Faults 10,1 (48.S3%) 0 (0%)

98.33%

10o%

Error

Coverage

(with

time out)

100%

100%



self-checking circuits can be used to protect against such
problems.

Finally, since removal of all faults orior to operational

use of the software system cannot be guaranteed using
software validation techniques, concurrent error detection

of errors caused by software bugs is as important as
detection of errors due to physlcal failures in the

hardware. Although the technique discussed in this paper
can be used to detect errors due to coding faults during the
construction of the software, there is evidence that more

errors occur during the requirements and design stages
than during coding [27]. Run-time assertions have also

been proposed for the detection of run-time errors due to

design faults in the software. These techniques are

discussed in [28, 29, 30]. As more and more critical safety
systems becoming computerized, there is incentive to
include such checking mechanisms in the software to
detect run-time errors ciue to software faults.

In summary, It has been shown that a reliable system
level concurrent detection of errors due to hardware faults

can be accomplished by introducing executable assertions
into the program to monitor the correct operaUon of the

system. The design technique discussed in this paper
provides a systematic approach to the design of such

assertion statements. Since this approach require only
software redundancy, it offer an inexpensive approach to
achieve concurrent error detecrdon. This technique,
however, also has its Iimitations; it ks desirable that we
also include other forms of concurrent error detection to

rectify the situation, particularly for safty critical
applications.
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